Cargando…
Machine learning assisted prediction of the Young’s modulus of compositionally complex alloys
We identify compositionally complex alloys (CCAs) that offer exceptional mechanical properties for elevated temperature applications by employing machine learning (ML) in conjunction with rapid synthesis and testing of alloys for validation to accelerate alloy design. The advantages of this approach...
Autores principales: | Khakurel, Hrishabh, Taufique, M. F. N., Roy, Ankit, Balasubramanian, Ganesh, Ouyang, Gaoyuan, Cui, Jun, Johnson, Duane D., Devanathan, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387451/ https://www.ncbi.nlm.nih.gov/pubmed/34433841 http://dx.doi.org/10.1038/s41598-021-96507-0 |
Ejemplares similares
-
Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning
por: Marković, Gordana, et al.
Publicado: (2023) -
A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
por: Mamun, Osman, et al.
Publicado: (2021) -
Biomechanical Evaluation of Ti-Nb-Sn Alloy Implants with a Low Young’s Modulus
por: Takahashi, Kenta, et al.
Publicado: (2015) -
Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites
por: Zhang, Xudong, et al.
Publicado: (2017) -
Machine learning (ML)-assisted surface tension and oscillation-induced elastic modulus studies of oxide-coated liquid metal (LM) alloys
por: Hossain, Kazi Zihan, et al.
Publicado: (2023)