Cargando…

Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning

Auscultation has been essential part of the physical examination; this is non-invasive, real-time, and very informative. Detection of abnormal respiratory sounds with a stethoscope is important in diagnosing respiratory diseases and providing first aid. However, accurate interpretation of respirator...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yoonjoo, Hyon, YunKyong, Jung, Sung Soo, Lee, Sunju, Yoo, Geon, Chung, Chaeuk, Ha, Taeyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387488/
https://www.ncbi.nlm.nih.gov/pubmed/34433880
http://dx.doi.org/10.1038/s41598-021-96724-7
Descripción
Sumario:Auscultation has been essential part of the physical examination; this is non-invasive, real-time, and very informative. Detection of abnormal respiratory sounds with a stethoscope is important in diagnosing respiratory diseases and providing first aid. However, accurate interpretation of respiratory sounds requires clinician’s considerable expertise, so trainees such as interns and residents sometimes misidentify respiratory sounds. To overcome such limitations, we tried to develop an automated classification of breath sounds. We utilized deep learning convolutional neural network (CNN) to categorize 1918 respiratory sounds (normal, crackles, wheezes, rhonchi) recorded in the clinical setting. We developed the predictive model for respiratory sound classification combining pretrained image feature extractor of series, respiratory sound, and CNN classifier. It detected abnormal sounds with an accuracy of 86.5% and the area under the ROC curve (AUC) of 0.93. It further classified abnormal lung sounds into crackles, wheezes, or rhonchi with an overall accuracy of 85.7% and a mean AUC of 0.92. On the other hand, as a result of respiratory sound classification by different groups showed varying degree in terms of accuracy; the overall accuracies were 60.3% for medical students, 53.4% for interns, 68.8% for residents, and 80.1% for fellows. Our deep learning-based classification would be able to complement the inaccuracies of clinicians' auscultation, and it may aid in the rapid diagnosis and appropriate treatment of respiratory diseases.