Cargando…
GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays
Can one learn to diagnose COVID-19 under extreme minimal supervision? Since the outbreak of the novel COVID-19 there has been a rush for developing automatic techniques for expert-level disease identification on Chest X-ray data. In particular, the use of deep supervised learning has become the go-t...
Autores principales: | Aviles-Rivero, Angelica I., Sellars, Philip, Schönlieb, Carola-Bibiane, Papadakis, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387569/ https://www.ncbi.nlm.nih.gov/pubmed/34462610 http://dx.doi.org/10.1016/j.patcog.2021.108274 |
Ejemplares similares
-
Diagnosis of Chest Pneumonia with X-ray Images Based on Graph Reasoning
por: Wang, Cheng, et al.
Publicado: (2023) -
Evaluating explainability for graph neural networks
por: Agarwal, Chirag, et al.
Publicado: (2023) -
Magic and antimagic graphs: attributes, observations and challenges in graph labelings
por: Bača, Martin, et al.
Publicado: (2019) -
Integrating
Explainability into Graph Neural Network
Models for the Prediction of X-ray Absorption Spectra
por: Kotobi, Amir, et al.
Publicado: (2023) -
Population-wise labeling of sulcal graphs using multi-graph matching
por: Yadav, Rohit, et al.
Publicado: (2023)