Cargando…
Automated healthcare-associated infection surveillance using an artificial intelligence algorithm
Healthcare-associated infections (HAIs) are among the most common adverse events in hospitals. We used artificial intelligence (AI) algorithms for infection surveillance in a cohort study. The model correctly detected 67 out of 73 patients with HAIs. The final model used a multilayer perceptron neur...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387762/ https://www.ncbi.nlm.nih.gov/pubmed/34471868 http://dx.doi.org/10.1016/j.infpip.2021.100167 |
_version_ | 1783742509196771328 |
---|---|
author | dos Santos, R.P. Silva, D. Menezes, A. Lukasewicz, S. Dalmora, C.H. Carvalho, O. Giacomazzi, J. Golin, N. Pozza, R. Vaz, T.A. |
author_facet | dos Santos, R.P. Silva, D. Menezes, A. Lukasewicz, S. Dalmora, C.H. Carvalho, O. Giacomazzi, J. Golin, N. Pozza, R. Vaz, T.A. |
author_sort | dos Santos, R.P. |
collection | PubMed |
description | Healthcare-associated infections (HAIs) are among the most common adverse events in hospitals. We used artificial intelligence (AI) algorithms for infection surveillance in a cohort study. The model correctly detected 67 out of 73 patients with HAIs. The final model used a multilayer perceptron neural network achieving an area under receiver operating curve (AUROC) of 90.27%; specificity of 78.86%; sensitivity of 88.57%. Respiratory infections had the best results (AUROC ≥93.47%). The AI algorithm could identify most HAIs. AI is a feasible method for HAI surveillance, has the potential to save time, promote accurate hospital-wide surveillance, and improve infection prevention performance. |
format | Online Article Text |
id | pubmed-8387762 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-83877622021-08-31 Automated healthcare-associated infection surveillance using an artificial intelligence algorithm dos Santos, R.P. Silva, D. Menezes, A. Lukasewicz, S. Dalmora, C.H. Carvalho, O. Giacomazzi, J. Golin, N. Pozza, R. Vaz, T.A. Infect Prev Pract Short Report Healthcare-associated infections (HAIs) are among the most common adverse events in hospitals. We used artificial intelligence (AI) algorithms for infection surveillance in a cohort study. The model correctly detected 67 out of 73 patients with HAIs. The final model used a multilayer perceptron neural network achieving an area under receiver operating curve (AUROC) of 90.27%; specificity of 78.86%; sensitivity of 88.57%. Respiratory infections had the best results (AUROC ≥93.47%). The AI algorithm could identify most HAIs. AI is a feasible method for HAI surveillance, has the potential to save time, promote accurate hospital-wide surveillance, and improve infection prevention performance. Elsevier 2021-07-31 /pmc/articles/PMC8387762/ /pubmed/34471868 http://dx.doi.org/10.1016/j.infpip.2021.100167 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Short Report dos Santos, R.P. Silva, D. Menezes, A. Lukasewicz, S. Dalmora, C.H. Carvalho, O. Giacomazzi, J. Golin, N. Pozza, R. Vaz, T.A. Automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
title | Automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
title_full | Automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
title_fullStr | Automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
title_full_unstemmed | Automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
title_short | Automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
title_sort | automated healthcare-associated infection surveillance using an artificial intelligence algorithm |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387762/ https://www.ncbi.nlm.nih.gov/pubmed/34471868 http://dx.doi.org/10.1016/j.infpip.2021.100167 |
work_keys_str_mv | AT dossantosrp automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT silvad automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT menezesa automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT lukasewiczs automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT dalmorach automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT carvalhoo automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT giacomazzij automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT golinn automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT pozzar automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm AT vazta automatedhealthcareassociatedinfectionsurveillanceusinganartificialintelligencealgorithm |