Cargando…

Multi-Probiotic Lactobacillus Supplementation Improves Liver Function and Reduces Cholesterol Levels in Jeju Native Pigs

SIMPLE SUMMARY: Probiotics are used in the food industry as feed additives to maintain the balance of animal gut microbiota. They are also considered to have potential therapeutic effects against liver diseases. This study showed that dietary Lactobacillus supplementation improved liver function and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Dahye, Min, Yunhui, Yang, Jiwon, Heo, Yunji, Kim, Mangeun, Hur, Chang-Gi, Lee, Sang-Chul, Lee, Hak-Kyo, Song, Ki-Duk, Heo, Jaeyoung, Son, Young-Ok, Lee, Dong-Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388395/
https://www.ncbi.nlm.nih.gov/pubmed/34438766
http://dx.doi.org/10.3390/ani11082309
Descripción
Sumario:SIMPLE SUMMARY: Probiotics are used in the food industry as feed additives to maintain the balance of animal gut microbiota. They are also considered to have potential therapeutic effects against liver diseases. This study showed that dietary Lactobacillus supplementation improved liver function and reduced cholesterol levels in Jeju native pigs, with Toll-like receptors (TLR) signaling as the primary response in the gut against Lactobacillus and TNF-α/IFN-γ as the central mediator cytokines in the gut and liver tissues. Lactobacillus supplementation may be applied to treat metabolic disorders of the liver, especially cholesterol-related disorders, in farm animals. ABSTRACT: We evaluated the dietary effects of multiple probiotics in Jeju native pigs, using basal diet and multi-probiotic Lactobacillus (basal diet with 1% multi-probiotics) treatments (n = 9 each) for 3 months. We analyzed growth performance, feed efficiency, backfat thickness, blood parameters, hematological profiles, adipokines, and immune-related cytokines in pig tissues. Average daily gain, feed intake, feed efficiency, backfat thickness, and body weight were not significantly different between both groups. In Lactobacillus group, total protein (p < 0.08) and bilirubin (p < 0.03) concentrations increased; blood urea nitrogen (p < 0.08), alkaline phosphatase (p < 0.08), and gamma-glutamyltransferase (p < 0.08) activities decreased. Lactobacillus group showed decreased adiponectin (p < 0.05), chemerin (p < 0.05), and visfatin expression in adipose tissues, and increased TLR4 (p < 0.05), MYD88 (p < 0.05), TNF-α (p < 0.001), and IFN-γ (p < 0.001) expression in the liver. Additionally, NOD1 (p < 0.05), NOD2 (p < 0.01), and MYD88 (p < 0.05) mRNA levels in proximal colon tissue upregulated significantly. Colon, longissimus dorsi muscle, fat tissue, and liver histological analyses revealed no significant differences between the groups. Conclusively, Lactobacillus supplementation improved liver function and reduced cholesterol levels. Its application may treat metabolic liver disorders, especially cholesterol-related disorders.