Cargando…
Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs
SIMPLE SUMMARY: Since antibiotics are banned in animal feed in many countries, probiotics have received more attention as reliable alternatives. We mainly study the effect of adding Lactobacillus plantarum BG0001 on the performance of weaned piglets for 42 days. The results: weaning pigs fed diet su...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388486/ https://www.ncbi.nlm.nih.gov/pubmed/34438690 http://dx.doi.org/10.3390/ani11082232 |
_version_ | 1783742654297669632 |
---|---|
author | Wang, Huan Kim, In-Ho |
author_facet | Wang, Huan Kim, In-Ho |
author_sort | Wang, Huan |
collection | PubMed |
description | SIMPLE SUMMARY: Since antibiotics are banned in animal feed in many countries, probiotics have received more attention as reliable alternatives. We mainly study the effect of adding Lactobacillus plantarum BG0001 on the performance of weaned piglets for 42 days. The results: weaning pigs fed diet supplementation with L. plantarum BG0001 significantly improved the growth performance and fecal microbiota, and achieved similar effects as antibiotic growth promoters. Therefore, we consider that L. plantarum BG0001 will have a good role in replacing antibiotic growth promoters in swine feed. It can bring potentially huge economic income to the animal husbandry industry. ABSTRACT: A total of 180, 4-week-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.67 ± 1.40 kg) were used in a 42 day experiment to evaluate the effect of dietary probiotics (Lactobacillus plantarum BG0001) on growth performance, nutrient digestibility, blood profile, fecal microbiota, and noxious gas emission. All pigs were randomly allotted to one of four treatment diets in a completely randomized block design. Each treatment had nine replicates with five pigs/pen (mixed sex) Designated dietary treatments were as: (1) basal diet (NC), (2) NC + 0.2% antibiotics (chlortetracycline) (PC), (3) NC + 0.1% L. plantarum BG0001 (Lactobacillus plantarum BG0001) (NC1), (4) NC + 0.2% L. plantarum BG0001 (NC2). On d 42, BW and G:F were lower (p < 0.05) in pigs fed NC diet compared with PC diet and probiotic diets. Throughout this experiment, the average daily gain increased (p < 0.05) in pigs when fed with PC and probiotic diets than the NC diet. The average daily feed intake was higher (p < 0.05) in pigs fed PC diet during day 0–7 and 22–42, and probiotic diets during day 0–7 compared with NC diet, respectively. The Lactobacillus count was increased and Escherichia coli count was decreased (p < 0.05) in the fecal microbiota of pigs fed probiotic diets, and E. coli were decreased (p < 0.05) when fed a PC diet compared with the NC diet on day 21. Moreover, the apparent total tract nutrient digestibility, blood profile, and the concentration of noxious gas emission had no negative effects by the probiotic treatments. In conclusion, dietary supplementation with L. plantarum BG0001 significantly improved the growth performance, increased fecal Lactobacillus, and decreased E. coli counts in weaning pigs. |
format | Online Article Text |
id | pubmed-8388486 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83884862021-08-27 Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs Wang, Huan Kim, In-Ho Animals (Basel) Article SIMPLE SUMMARY: Since antibiotics are banned in animal feed in many countries, probiotics have received more attention as reliable alternatives. We mainly study the effect of adding Lactobacillus plantarum BG0001 on the performance of weaned piglets for 42 days. The results: weaning pigs fed diet supplementation with L. plantarum BG0001 significantly improved the growth performance and fecal microbiota, and achieved similar effects as antibiotic growth promoters. Therefore, we consider that L. plantarum BG0001 will have a good role in replacing antibiotic growth promoters in swine feed. It can bring potentially huge economic income to the animal husbandry industry. ABSTRACT: A total of 180, 4-week-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.67 ± 1.40 kg) were used in a 42 day experiment to evaluate the effect of dietary probiotics (Lactobacillus plantarum BG0001) on growth performance, nutrient digestibility, blood profile, fecal microbiota, and noxious gas emission. All pigs were randomly allotted to one of four treatment diets in a completely randomized block design. Each treatment had nine replicates with five pigs/pen (mixed sex) Designated dietary treatments were as: (1) basal diet (NC), (2) NC + 0.2% antibiotics (chlortetracycline) (PC), (3) NC + 0.1% L. plantarum BG0001 (Lactobacillus plantarum BG0001) (NC1), (4) NC + 0.2% L. plantarum BG0001 (NC2). On d 42, BW and G:F were lower (p < 0.05) in pigs fed NC diet compared with PC diet and probiotic diets. Throughout this experiment, the average daily gain increased (p < 0.05) in pigs when fed with PC and probiotic diets than the NC diet. The average daily feed intake was higher (p < 0.05) in pigs fed PC diet during day 0–7 and 22–42, and probiotic diets during day 0–7 compared with NC diet, respectively. The Lactobacillus count was increased and Escherichia coli count was decreased (p < 0.05) in the fecal microbiota of pigs fed probiotic diets, and E. coli were decreased (p < 0.05) when fed a PC diet compared with the NC diet on day 21. Moreover, the apparent total tract nutrient digestibility, blood profile, and the concentration of noxious gas emission had no negative effects by the probiotic treatments. In conclusion, dietary supplementation with L. plantarum BG0001 significantly improved the growth performance, increased fecal Lactobacillus, and decreased E. coli counts in weaning pigs. MDPI 2021-07-29 /pmc/articles/PMC8388486/ /pubmed/34438690 http://dx.doi.org/10.3390/ani11082232 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Huan Kim, In-Ho Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs |
title | Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs |
title_full | Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs |
title_fullStr | Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs |
title_full_unstemmed | Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs |
title_short | Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs |
title_sort | evaluation of dietary probiotic (lactobacillus plantarum bg0001) supplementation on the growth performance, nutrient digestibility, blood profile, fecal gas emission, and fecal microbiota in weaning pigs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388486/ https://www.ncbi.nlm.nih.gov/pubmed/34438690 http://dx.doi.org/10.3390/ani11082232 |
work_keys_str_mv | AT wanghuan evaluationofdietaryprobioticlactobacillusplantarumbg0001supplementationonthegrowthperformancenutrientdigestibilitybloodprofilefecalgasemissionandfecalmicrobiotainweaningpigs AT kiminho evaluationofdietaryprobioticlactobacillusplantarumbg0001supplementationonthegrowthperformancenutrientdigestibilitybloodprofilefecalgasemissionandfecalmicrobiotainweaningpigs |