Cargando…

Genetic Parameters of Workability Traits in the Population of Polish Holstein-Friesian Cows Based on Conventional and Genomic Data

SIMPLE SUMMARY: Workability traits are a group of functional traits that affect the economics of dairy production and are increasingly included in selection indexes. The most important of them include milking speed and temperament. The aim of this study was to estimate genetic and phenotypic paramet...

Descripción completa

Detalles Bibliográficos
Autores principales: Szymik, Bartosz, Topolski, Piotr, Jagusiak, Wojciech
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388624/
https://www.ncbi.nlm.nih.gov/pubmed/34438899
http://dx.doi.org/10.3390/ani11082443
Descripción
Sumario:SIMPLE SUMMARY: Workability traits are a group of functional traits that affect the economics of dairy production and are increasingly included in selection indexes. The most important of them include milking speed and temperament. The aim of this study was to estimate genetic and phenotypic parameters of workability traits. The estimation was carried out by considering two approaches: the first using pedigree data and the second using pedigree and genomic data. The obtained results indicate that workability traits belong to low heritable traits and are positively correlated genetically and phenotypically, which means a possibility of their effective improvement in the population, taking into account that the genomic information of sires did not have a significant effect on the estimated genetic parameters. ABSTRACT: Heritabilities of workability (WT) traits—milking speed (MS) and temperament (MT)—as well as genetic and phenotypic correlations between these traits in the population of Polish Holstein-Friesian (PHF) cows were estimated. The estimation of genetic parameters was performed twice: first with the use of pedigree data; and second with the use of pedigree and genomic data. Phenotypic data from routinely conducted MS and MT evaluations for 1,045,511 cows born from 2004 to 2013 were available; the cows were evaluated from 2011 to 2015. The main dataset was reduced based on imposed restrictions (e.g., on age of calving, stage of lactation and day of first trial milking). The dataset prepared in this manner comprised 391,615 cows. It was then reduced to daughters of 10% randomly selected sires for computational reasons. Finally, for genetic parameter estimation, 13,280 records of cows were used. The linear observation model included additive random effects of animal, fixed effects of herd-year-season of calving subclass (HYS) and lactation phase, fixed regressions on cow age at calving and the percent of HF breed genes in the cow genotype. Heritabilities estimated based on pedigree data were 0.12 (±0.0067) for MS and 0.08 (±0.0063) for MT, the genetic correlation between MS and MT was estimated at 0.05 (±0.0002) and the phenotypic correlation coefficient was estimated at 0.14 (±0.0004). The inclusion of genomic information of sire bulls had no clear effect on the size of the estimated WT genetic parameters. The heritabilities of MS and MT were 0.11 (±0.0065) and 0.09 (±0.0012), respectively. The genetic and phenotypic correlation coefficients were 0.07 (±0.0003) and 0.12 (±0.0005), respectively. The sizes of the obtained heritabilities of WT and of the genetic and phenotypic correlation between these traits indicate the possibility of effective population improvement for both WT traits.