Cargando…
Cadmium Accumulation and Depuration in the Muscle of Prussian Carp (Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin
SIMPLE SUMMARY: Rapid urbanization and industrialization has resulted in substantial contamination of various ecosystems, especially aquatic environments with heavy metals. Heavy metals are classified as either essential (iron, zinc, or copper) or non-essential (cadmium, lead, or mercury) for organi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388658/ https://www.ncbi.nlm.nih.gov/pubmed/34438910 http://dx.doi.org/10.3390/ani11082454 |
Sumario: | SIMPLE SUMMARY: Rapid urbanization and industrialization has resulted in substantial contamination of various ecosystems, especially aquatic environments with heavy metals. Heavy metals are classified as either essential (iron, zinc, or copper) or non-essential (cadmium, lead, or mercury) for organisms. Cadmium is a toxic, cancerogenic, and mutagenic metal, occurring as anthropogenic contamination in aquatic environments. The level of cadmium uptake in animals depends on the rate at which they are accumulated and eliminated. Exceeding the permissible levels of cadmium in fish muscle may pose risks for human health in the case of contaminated fish consumption. The aim of the present study was to evaluate the influence of melatonin on cadmium accumulation and elimination in fish muscle. Prussian carps were exposed to two doses of cadmium in the presence or without the melatonin implants. This is the first study to report that melatonin co-administration can effectively protect fish from the accumulation of cadmium in muscle tissue, improve the accumulated cadmium depuration from muscle, and prevent disturbance of the concentration of essential metals in fish body. ABSTRACT: The aim of this study was to investigate the bioaccumulation of cadmium in the muscle tissue of Prussian carp during 7 and 13 weeks of exposure to different concentrations of this metal in water (0.4 and 4.0 mg/L), and the depuration of cadmium from muscle during the following 6-week depuration period in the presence of melatonin implants. Furthermore, the relationship between cadmium accumulation and the levels of essential bioelements (copper, zinc, iron) in muscle was evaluated, as well as the bioconcentration factor of cadmium. Heavy metal concentration was determined using atomic absorption spectrometry. Cadmium accumulation in fish muscle increased with the duration of exposure. Cd concentrations exceeded the permissible levels for human consumption in groups exposed to the higher concentration of this metal. Moreover, a significant increase of Zn and Fe levels in the muscle was observed. In the fish that received melatonin implants and were exposed to Cd, its level in the muscle was significantly lower. The depuration of accumulated cadmium depended mainly on the duration of the elimination period. This is the first study to report that melatonin co-administration can effectively protect the fish from the accumulation of cadmium in muscle tissue and changes in trace metal levels. |
---|