Cargando…
Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase
Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388978/ https://www.ncbi.nlm.nih.gov/pubmed/34439429 http://dx.doi.org/10.3390/antiox10081181 |
_version_ | 1783742757191286784 |
---|---|
author | Durak, Roma Dampc, Jan Kula-Maximenko, Monika Mołoń, Mateusz Durak, Tomasz |
author_facet | Durak, Roma Dampc, Jan Kula-Maximenko, Monika Mołoń, Mateusz Durak, Tomasz |
author_sort | Durak, Roma |
collection | PubMed |
description | Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures. |
format | Online Article Text |
id | pubmed-8388978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83889782021-08-27 Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase Durak, Roma Dampc, Jan Kula-Maximenko, Monika Mołoń, Mateusz Durak, Tomasz Antioxidants (Basel) Article Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures. MDPI 2021-07-25 /pmc/articles/PMC8388978/ /pubmed/34439429 http://dx.doi.org/10.3390/antiox10081181 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Durak, Roma Dampc, Jan Kula-Maximenko, Monika Mołoń, Mateusz Durak, Tomasz Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_full | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_fullStr | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_full_unstemmed | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_short | Changes in Antioxidative, Oxidoreductive and Detoxification Enzymes during Development of Aphids and Temperature Increase |
title_sort | changes in antioxidative, oxidoreductive and detoxification enzymes during development of aphids and temperature increase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388978/ https://www.ncbi.nlm.nih.gov/pubmed/34439429 http://dx.doi.org/10.3390/antiox10081181 |
work_keys_str_mv | AT durakroma changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT dampcjan changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT kulamaximenkomonika changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT mołonmateusz changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease AT duraktomasz changesinantioxidativeoxidoreductiveanddetoxificationenzymesduringdevelopmentofaphidsandtemperatureincrease |