Cargando…
Demyristoylation of the Cytoplasmic Redox Protein Trx-h2 Is Critical for Inducing a Rapid Cold Stress Response in Plants
In Arabidopsis, the cytosolic redox protein thioredoxin h2 (Trx-h2) is anchored to the cytoplasmic endomembrane through the myristoylated second glycine residue (Gly(2)). However, under cold stress, the cytosolic Trx-h2 is rapidly translocated to the nucleus, where it interacts with and reduces the...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389195/ https://www.ncbi.nlm.nih.gov/pubmed/34439534 http://dx.doi.org/10.3390/antiox10081287 |
Sumario: | In Arabidopsis, the cytosolic redox protein thioredoxin h2 (Trx-h2) is anchored to the cytoplasmic endomembrane through the myristoylated second glycine residue (Gly(2)). However, under cold stress, the cytosolic Trx-h2 is rapidly translocated to the nucleus, where it interacts with and reduces the cold-responsive C-repeat-binding factors (CBFs), thus activating cold-responsive (COR) genes. In this study, we investigated the significance of fatty acid modification of Trx-h2 under cold conditions by generating transgenic Arabidopsis lines in the trx-h2 mutant background, overexpressing Trx-h2 (Trx-h2(OE)/trx-h2) and its point mutation variant Trx-h2(G/A) [Trx-h2(G/A)(OE)/trx-h2], in which the Gly(2) was replaced by alanine (Ala). Due to the lack of Gly(2), Trx-h2(G/A) was incapable of myristoylation, and a part of Trx-h2(G/A) localized to the nucleus even under warm temperature. As no time is spent on the demyristoylation and subsequent nuclear translocation of Trx-h2(G/A) under a cold snap, the ability of Trx-h2(G/A) to protect plants from cold stress was greater than that of Trx-h2. Additionally, COR genes were up-regulated earlier in Trx-h2(G/A)2(OE)/trx-h2 plants than in Trx-h2(OE)/trx-h2 plants under cold stress. Consequently, Trx-h2(G/A)2(OE)/trx-h2 plants showed greater cold tolerance than Col-0 (wild type) and Trx-h2(OE)/trx-h2 plants. Overall, our results clearly demonstrate the significance of the demyristoylation of Trx-h2 in enhancing plant cold/freezing tolerance. |
---|