Cargando…
Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses
Recovery in athletes is hampered by soreness and fatigue. Consequently, nonsteroidal anti-inflammatory drugs are used as an effective strategy to maintain high performance. However, impact of these drugs on adaptations induced by training remains unknown. This study assessed the effects of diclofena...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389246/ https://www.ncbi.nlm.nih.gov/pubmed/34439494 http://dx.doi.org/10.3390/antiox10081246 |
_version_ | 1783742815832899584 |
---|---|
author | Barcelos, Rômulo Pillon Lima, Frederico Diniz Courtes, Aline Alves da Silva, Ingrid Kich Vargas, Jose Eduardo Royes, Luiz Fernando Freire Trindade, Cristiano González-Gallego, Javier Soares, Félix Alexandre Antunes |
author_facet | Barcelos, Rômulo Pillon Lima, Frederico Diniz Courtes, Aline Alves da Silva, Ingrid Kich Vargas, Jose Eduardo Royes, Luiz Fernando Freire Trindade, Cristiano González-Gallego, Javier Soares, Félix Alexandre Antunes |
author_sort | Barcelos, Rômulo Pillon |
collection | PubMed |
description | Recovery in athletes is hampered by soreness and fatigue. Consequently, nonsteroidal anti-inflammatory drugs are used as an effective strategy to maintain high performance. However, impact of these drugs on adaptations induced by training remains unknown. This study assessed the effects of diclofenac administration (10 mg/kg/day) on rats subjected to an exhaustive test, after six weeks of swimming training. Over the course of 10 days, three repeated swimming bouts were performed, and diclofenac or saline were administered once a day. Trained animals exhibited higher muscle citrate synthase and lower plasma creatinine kinase activities as compared to sedentary animals, wherein diclofenac had no impact. Training increased time to exhaustion, however, diclofenac blunted this effect. It also impaired the increase in plasma and liver interleukin-6 levels. The trained group exhibited augmented catalase, glutathione peroxidase, and glutathione reductase activities, and a higher ratio of reduced-to-oxidized glutathione in the liver. However, diclofenac treatment blunted all these effects. Systems biology analysis revealed a close relationship between diclofenac and liver catalase. These results confirmed that regular exercise induces inflammation and oxidative stress, which are crucial for tissue adaptations. Altogether, diclofenac treatment might be helpful in preventing pain and inflammation, but its use severely affects performance and tissue adaptation. |
format | Online Article Text |
id | pubmed-8389246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83892462021-08-27 Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses Barcelos, Rômulo Pillon Lima, Frederico Diniz Courtes, Aline Alves da Silva, Ingrid Kich Vargas, Jose Eduardo Royes, Luiz Fernando Freire Trindade, Cristiano González-Gallego, Javier Soares, Félix Alexandre Antunes Antioxidants (Basel) Article Recovery in athletes is hampered by soreness and fatigue. Consequently, nonsteroidal anti-inflammatory drugs are used as an effective strategy to maintain high performance. However, impact of these drugs on adaptations induced by training remains unknown. This study assessed the effects of diclofenac administration (10 mg/kg/day) on rats subjected to an exhaustive test, after six weeks of swimming training. Over the course of 10 days, three repeated swimming bouts were performed, and diclofenac or saline were administered once a day. Trained animals exhibited higher muscle citrate synthase and lower plasma creatinine kinase activities as compared to sedentary animals, wherein diclofenac had no impact. Training increased time to exhaustion, however, diclofenac blunted this effect. It also impaired the increase in plasma and liver interleukin-6 levels. The trained group exhibited augmented catalase, glutathione peroxidase, and glutathione reductase activities, and a higher ratio of reduced-to-oxidized glutathione in the liver. However, diclofenac treatment blunted all these effects. Systems biology analysis revealed a close relationship between diclofenac and liver catalase. These results confirmed that regular exercise induces inflammation and oxidative stress, which are crucial for tissue adaptations. Altogether, diclofenac treatment might be helpful in preventing pain and inflammation, but its use severely affects performance and tissue adaptation. MDPI 2021-08-04 /pmc/articles/PMC8389246/ /pubmed/34439494 http://dx.doi.org/10.3390/antiox10081246 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Barcelos, Rômulo Pillon Lima, Frederico Diniz Courtes, Aline Alves da Silva, Ingrid Kich Vargas, Jose Eduardo Royes, Luiz Fernando Freire Trindade, Cristiano González-Gallego, Javier Soares, Félix Alexandre Antunes Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses |
title | Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses |
title_full | Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses |
title_fullStr | Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses |
title_full_unstemmed | Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses |
title_short | Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses |
title_sort | diclofenac administration after physical training blunts adaptations of peripheral systems and leads to losses in exercise performance: in vivo and in silico analyses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389246/ https://www.ncbi.nlm.nih.gov/pubmed/34439494 http://dx.doi.org/10.3390/antiox10081246 |
work_keys_str_mv | AT barcelosromulopillon diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT limafredericodiniz diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT courtesalinealves diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT dasilvaingridkich diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT vargasjoseeduardo diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT royesluizfernandofreire diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT trindadecristiano diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT gonzalezgallegojavier diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses AT soaresfelixalexandreantunes diclofenacadministrationafterphysicaltrainingbluntsadaptationsofperipheralsystemsandleadstolossesinexerciseperformanceinvivoandinsilicoanalyses |