Cargando…
Review of machine learning methods for RNA secondary structure prediction
Secondary structure plays an important role in determining the function of noncoding RNAs. Hence, identifying RNA secondary structures is of great value to research. Computational prediction is a mainstream approach for predicting RNA secondary structure. Unfortunately, even though new methods have...
Autores principales: | Zhao, Qi, Zhao, Zheng, Fan, Xiaoya, Yuan, Zhengwei, Mao, Qian, Yao, Yudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389396/ https://www.ncbi.nlm.nih.gov/pubmed/34437528 http://dx.doi.org/10.1371/journal.pcbi.1009291 |
Ejemplares similares
-
RNA independent fragment partition method based on deep learning for RNA secondary structure prediction
por: Zhao, Qi, et al.
Publicado: (2023) -
Predicting Respiratory Rate from Electrocardiogram and Photoplethysmogram Using a Transformer-Based Model
por: Zhao, Qi, et al.
Publicado: (2023) -
Research on folding diversity in statistical learning methods for RNA secondary structure prediction
por: Zhu, Yu, et al.
Publicado: (2018) -
Identifying MicroRNA Markers That Predict COVID-19 Severity Using Machine Learning Methods
por: Ren, Jingxin, et al.
Publicado: (2022) -
Length-Dependent Deep Learning Model for RNA Secondary Structure Prediction
por: Mao, Kangkun, et al.
Publicado: (2022)