Cargando…
A data assimilation framework that uses the Kullback-Leibler divergence
The process of integrating observations into a numerical model of an evolving dynamical system, known as data assimilation, has become an essential tool in computational science. These methods, however, are computationally expensive as they typically involve large matrix multiplication and inversion...
Autores principales: | Pimentel, Sam, Qranfal, Youssef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389478/ https://www.ncbi.nlm.nih.gov/pubmed/34437594 http://dx.doi.org/10.1371/journal.pone.0256584 |
Ejemplares similares
-
Kullback–Leibler divergence and the Pareto–Exponential approximation
por: Weinberg, G. V.
Publicado: (2016) -
Computation of Kullback–Leibler Divergence in Bayesian Networks
por: Moral, Serafín, et al.
Publicado: (2021) -
Kullback Leibler divergence in complete bacterial and phage genomes
por: Akhter, Sajia, et al.
Publicado: (2017) -
Kullback–Leibler Divergence of a Freely Cooling Granular Gas
por: Megías, Alberto, et al.
Publicado: (2020) -
Some Order Preserving Inequalities for Cross Entropy and Kullback–Leibler Divergence
por: Sbert, Mateu, et al.
Publicado: (2018)