Cargando…
Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI
The dimensionality of the spatially distributed channels and the temporal resolution of electroencephalogram (EEG) based brain-computer interfaces (BCI) undermine emotion recognition models. Thus, prior to modeling such data, as the final stage of the learning pipeline, adequate preprocessing, trans...
Autores principales: | Almarri, Badar, Rajasekaran, Sanguthevar, Huang, Chun-Hsi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389489/ https://www.ncbi.nlm.nih.gov/pubmed/34437542 http://dx.doi.org/10.1371/journal.pone.0253383 |
Ejemplares similares
-
Selective Subject Pooling Strategy to Improve Model Generalization for a Motor Imagery BCI †
por: Won, Kyungho, et al.
Publicado: (2021) -
Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters
por: Suk, Heung-Il, et al.
Publicado: (2014) -
Effects of Background Music on Objective and Subjective Performance Measures in an Auditory BCI
por: Zhou, Sijie, et al.
Publicado: (2016) -
Subject Separation Network for Reducing Calibration Time of MI-Based BCI
por: Hu, Haochen, et al.
Publicado: (2023) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023)