Cargando…
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
The advancement of Industry 4.0 and Industrial Internet of Things (IIoT) has laid more emphasis on reducing the parameter amount and storage space of the model in addition to the automatic and accurate fault diagnosis. In this case, this paper proposes a lightweight convolutional neural network (LCN...
Autores principales: | Yan, Jing, Liu, Tingliang, Ye, Xinyu, Jing, Qianzhen, Dai, Yuannan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389496/ https://www.ncbi.nlm.nih.gov/pubmed/34437598 http://dx.doi.org/10.1371/journal.pone.0256287 |
Ejemplares similares
-
A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis
por: Liu, Wenkai, et al.
Publicado: (2019) -
A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
por: Guo, Sheng, et al.
Publicado: (2018) -
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
por: Ma, Shangjun, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020) -
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
por: Cai, Yuxiang, et al.
Publicado: (2022)