Cargando…
Machine Learning and Enhanced Sampling Simulations for Computing the Potential of Mean Force and Standard Binding Free Energy
[Image: see text] Computational capabilities are rapidly increasing, primarily because of the availability of GPU-based architectures. This creates unprecedented simulative possibilities for the systematic and robust computation of thermodynamic observables, including the free energy of a drug bindi...
Autores principales: | Bertazzo, Martina, Gobbo, Dorothea, Decherchi, Sergio, Cavalli, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389529/ https://www.ncbi.nlm.nih.gov/pubmed/34260233 http://dx.doi.org/10.1021/acs.jctc.1c00177 |
Ejemplares similares
-
Thermodynamics and Kinetics of Drug-Target Binding
by Molecular Simulation
por: Decherchi, Sergio, et al.
Publicado: (2020) -
Probabilistic Pocket Druggability Prediction via One-Class Learning
por: Aguti, Riccardo, et al.
Publicado: (2022) -
Optimal Transport
for Free Energy Estimation
por: Decherchi, S., et al.
Publicado: (2023) -
The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning
por: Decherchi, Sergio, et al.
Publicado: (2015) -
Editorial: Molecular Dynamics and Machine Learning in Drug Discovery
por: Decherchi, Sergio, et al.
Publicado: (2021)