Cargando…

Measurement of the Population of Electrosprayed Deprotomers of Coumaric Acids Using UV–Vis Laser Photodissociation Spectroscopy

[Image: see text] The measurement of deprotonation sites in multifunctional molecules following electrospray ionization is important to better inform a wide range of spectroscopic and photophysical studies that use electrospray to prepare molecular species for study in the gas phase. We demonstrate...

Descripción completa

Detalles Bibliográficos
Autores principales: Wong, Natalie G. K., Rankine, Conor D., Dessent, Caroline E. H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389988/
https://www.ncbi.nlm.nih.gov/pubmed/34342453
http://dx.doi.org/10.1021/acs.jpca.1c04880
Descripción
Sumario:[Image: see text] The measurement of deprotonation sites in multifunctional molecules following electrospray ionization is important to better inform a wide range of spectroscopic and photophysical studies that use electrospray to prepare molecular species for study in the gas phase. We demonstrate that low-resolution UV–vis laser photodissociation spectroscopy can be applied in situ to identify the deprotomers of three coumaric acids, trans-para-coumaric acid (CMA), trans-caffeic acid (CA), and trans-ferulic acid (FA), formed via electrospray. Electronic absorption spectra of the deprotonated coumaric acids are recorded via photodepletion and photofragmentation following electrospray from solutions of ethanol and acetonitrile. By comparing the experimental spectra to wave function theory calculations, we are able to confirm the presence of phenoxide and carboxylate deprotomers upon electrospray for all three coumaric acids, when sprayed from both protic and aprotic solvents. Ratios of the phenoxide:carboxylate deprotomers are obtained by generating summed theoretical absorption spectra that reproduce the experimental spectra. We find that choice of electrospray solvent has little effect on the ratio of deprotomers obtained for deprotonated CMA and CA but has a greater impact for FA. Our results are in excellent agreement with previous work conducted on deprotonated CMA using IR spectroscopy and demonstrate that UV photodissociation spectroscopy of electrosprayed ions has potential as a diagnostic tool for identifying deprotomeric species.