Cargando…
Multiscale Reweighted Stochastic Embedding: Deep Learning of Collective Variables for Enhanced Sampling
[Image: see text] Machine learning methods provide a general framework for automatically finding and representing the essential characteristics of simulation data. This task is particularly crucial in enhanced sampling simulations. There we seek a few generalized degrees of freedom, referred to as c...
Autores principales: | Rydzewski, Jakub, Valsson, Omar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8389995/ https://www.ncbi.nlm.nih.gov/pubmed/34213915 http://dx.doi.org/10.1021/acs.jpca.1c02869 |
Ejemplares similares
-
Reweighted Manifold
Learning of Collective Variables
from Enhanced Sampling Simulations
por: Rydzewski, Jakub, et al.
Publicado: (2022) -
Spectral Map:
Embedding Slow Kinetics in Collective
Variables
por: Rydzewski, Jakub
Publicado: (2023) -
Selecting High-Dimensional
Representations of Physical
Systems by Reweighted Diffusion Maps
por: Rydzewski, Jakub
Publicado: (2023) -
Improving the Efficiency of Variationally Enhanced
Sampling with Wavelet-Based Bias Potentials
por: Pampel, Benjamin, et al.
Publicado: (2022) -
HAMMER: Reweighting tool for simulated data samples
por: Duell, Stephan, et al.
Publicado: (2017)