Cargando…
A turning point prediction method of stock price based on RVFL-GMDH and chaotic time series analysis
Stock market prediction is extremely important for investors because knowing the future trend of stock prices will reduce the risk of investing capital for profit. Therefore, seeking an accurate, fast, and effective approach to identify the stock market movement is of great practical significance. T...
Autores principales: | Chen, Junde, Yang, Shuangyuan, Zhang, Defu, Nanehkaran, Y. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390045/ https://www.ncbi.nlm.nih.gov/pubmed/34465934 http://dx.doi.org/10.1007/s10115-021-01602-3 |
Ejemplares similares
-
A novel ensemble deep learning model for stock prediction based on stock prices and news
por: Li, Yang, et al.
Publicado: (2021) -
Fractal dimension analysis of stock prices of selected resulting companies after mergers and acquisitions
por: Verma, Shubham Kumar, et al.
Publicado: (2023) -
Financial price dynamics and phase transitions in the stock markets
por: Zhang, Ditian, et al.
Publicado: (2023) -
Stock Prices and Economic Activity in the Time of Coronavirus
por: Davis, Steven J., et al.
Publicado: (2021) -
Assessing Dry Weight of Hemodialysis Patients via Sparse Laplacian Regularized RVFL Neural Network with L(2,1)-Norm
por: Guo, Xiaoyi, et al.
Publicado: (2021)