Cargando…

A wild-derived inbred mouse strain, MSM/Ms, provides insights into novel skin tumor susceptibility genes

Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genet...

Descripción completa

Detalles Bibliográficos
Autores principales: Okumura, Kazuhiro, Saito, Megumi, Wakabayashi, Yuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Association for Laboratory Animal Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390311/
https://www.ncbi.nlm.nih.gov/pubmed/33776021
http://dx.doi.org/10.1538/expanim.21-0017
Descripción
Sumario:Cancer is one of the most catastrophic human genetic diseases. Experimental animal cancer models are essential for gaining insights into the complex interactions of different cells and genes in tumor initiation, promotion, and progression. Mouse models have been extensively used to analyze the genetic basis of cancer susceptibility. They have led to the identification of multiple loci that confer, either alone or in specific combinations, an increased susceptibility to cancer, some of which have direct translatability to human cancer. Additionally, wild-derived inbred mouse strains are an advantageous reservoir of novel genetic polymorphisms of cancer susceptibility genes, because of the evolutionary divergence between wild and classical inbred strains. Here, we review mapped Stmm (skin tumor modifier of MSM) loci using a Japanese wild-derived inbred mouse strain, MSM/Ms, and describe recent advances in our knowledge of the genes responsible for Stmm loci in the 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) two-stage skin carcinogenesis model.