Cargando…
Transition to psychosis in randomized clinical trials of individuals at clinical high risk of psychosis compared to observational cohorts: a systematic review and meta-analysis
BACKGROUND: Individuals at clinical high risk of psychosis (CHR-P) recruited in randomized clinical trials (RCTs) and observational cohorts may display a different enrichment and hence risk of transition to psychosis. No meta-analysis has ever addressed this issue. METHODS: “Preferred Reporting Item...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390336/ https://www.ncbi.nlm.nih.gov/pubmed/34315555 http://dx.doi.org/10.1192/j.eurpsy.2021.2222 |
Sumario: | BACKGROUND: Individuals at clinical high risk of psychosis (CHR-P) recruited in randomized clinical trials (RCTs) and observational cohorts may display a different enrichment and hence risk of transition to psychosis. No meta-analysis has ever addressed this issue. METHODS: “Preferred Reporting Items for Systematic reviews and Meta-Analyses” (PRISMA) and “Meta-analysis Of Observational Studies in Epidemiology” (MOOSE)–compliant meta-analysis. PubMed and Web of Science were searched until November 2020 (PROSPERO:CRD42021229223). We included nonoverlapping longitudinal studies (RCTs-control condition and observational cohorts) reporting the transition to psychosis in CHR-P individuals. The primary effect size measure was the cumulative risk of transition at 0.5, 1, and 2 years follow-up in RCTs compared to observational cohorts. Random effects meta-analyses, heterogeneity assessment, quality assessment, and meta-regressions were conducted. RESULTS: Ninety-four independent studies (24 RCTs, 70 observational cohorts) and 9,243 individuals (mean age = 20.1 ± 3.0 years; 43.7% females) were included. The meta-analytical risk of transitioning to psychosis from a CHR-P stage was 0.091 (95% confidence intervals [CI] = 0.068–0.121) at 0.5 years, 0.140 (95% CI = 0.101–0.191) at 1 year and 0.165 (95% CI = 0.097–0.267) at 2 years follow-up in RCTs, and 0.081 (95% CI = 0.067–0.099) at 0.5 years, 0.138 (95% CI = 0.114–0.167) at 1 year, and 0.174 (95% CI = 0.156–0.193) at 2 years follow-up in observational cohorts. There were no between-group differences in transition risks (p > 0.05). The proportion of CHR-P individuals with substance use disorders (excluding alcohol and cannabis) was higher in observational cohorts (16.8, 95% CI = 13.3–21.0%) than in RCTs (3.4, 95% CI = 0.8–12.7%; p = 0.018). CONCLUSIONS: There is no meta-analytic evidence supporting sampling biases in RCTs of CHR-P individuals. Further RCTs are needed to detect effective interventions to prevent psychosis in this at-risk group. |
---|