Cargando…
Explainable machine-learning predictions for complications after pediatric congenital heart surgery
The quality of treatment and prognosis after pediatric congenital heart surgery remains unsatisfactory. A reliable prediction model for postoperative complications of congenital heart surgery patients is essential to enable prompt initiation of therapy and improve the quality of prognosis. Here, we...
Autores principales: | Zeng, Xian, Hu, Yaoqin, Shu, Liqi, Li, Jianhua, Duan, Huilong, Shu, Qiang, Li, Haomin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390484/ https://www.ncbi.nlm.nih.gov/pubmed/34446783 http://dx.doi.org/10.1038/s41598-021-96721-w |
Ejemplares similares
-
Using Z-score to optimize population-specific DDH screening: a retrospective study in Hangzhou, China
por: Li, Haomin, et al.
Publicado: (2021) -
Prediction of central venous catheter-associated deep venous thrombosis in pediatric critical care settings
por: Li, Haomin, et al.
Publicado: (2021) -
Risk factors for central venous catheter-associated deep venous thrombosis in pediatric critical care settings identified by fusion model
por: Li, Haomin, et al.
Publicado: (2022) -
A computational method to quantitatively measure pediatric drug safety using electronic medical records
por: Yu, Gang, et al.
Publicado: (2020) -
PedMap: a pediatric diseases map generated from clinical big data from Hangzhou, China
por: Li, Haomin, et al.
Publicado: (2019)