Cargando…
Expression of heat-resistant β-glucosidase in Escherichia coli and its application in the production of gardenia blue
Gardenia blue is a natural blue pigment that is environmentally friendly, non-toxic, and stable. The hydrolysis of geniposide, catalyzed by β-glucosidase, is a critical step in the production process of gardenia blue. However, β-glucosidase is not resistant to high temperatures, limiting the product...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390534/ https://www.ncbi.nlm.nih.gov/pubmed/34504963 http://dx.doi.org/10.1016/j.synbio.2021.08.002 |
Sumario: | Gardenia blue is a natural blue pigment that is environmentally friendly, non-toxic, and stable. The hydrolysis of geniposide, catalyzed by β-glucosidase, is a critical step in the production process of gardenia blue. However, β-glucosidase is not resistant to high temperatures, limiting the production of gardenia blue. In this study, we investigated the effectiveness of a heat-resistant glucosidase obtained from Thermotoga maritima in the production of gardenia blue. The enzyme exhibited a maximum activity of 10.60 U/mL at 90 °C. Single-factor and orthogonal analyses showed that exogenously expressed heat-resistant glucosidase reacted with 470.3 μg/mL geniposide and 13.5 μg/mL glycine at 94.2 °C, producing a maximum yield of 26.2857 μg/mL of gardenia blue after 156.6 min. When applied to the dyeing of denim, gardenia blue produced by this method yielded excellent results; the best color-fastness was achieved when an iron ion mordant was used. This study revealed the feasibility and application potential of microbial production of gardenia blue. |
---|