Cargando…
Author Correction: Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
Autores principales: | Kim, Mingyu, Kim, Sungchul, Kim, Minjee, Bae, Hyun‑Jin, Park, Jae‑Woo, Kim, Namkug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390648/ https://www.ncbi.nlm.nih.gov/pubmed/34446825 http://dx.doi.org/10.1038/s41598-021-96793-8 |
Ejemplares similares
-
Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
por: Kim, Mingyu, et al.
Publicado: (2021) -
Realistic High-Resolution Body Computed Tomography Image Synthesis by Using Progressive Growing Generative Adversarial Network: Visual Turing Test
por: Park, Ho Young, et al.
Publicado: (2021) -
Synthesizing realistic high-resolution retina image by style-based generative adversarial network and its utilization
por: Kim, Mingyu, et al.
Publicado: (2022) -
An Image Turing Test on Realistic Gastroscopy Images Generated by Using the Progressive Growing of Generative Adversarial Networks
por: Shin, Keewon, et al.
Publicado: (2023) -
Image Turing test and its applications on synthetic chest radiographs by using the progressive growing generative adversarial network
por: Jang, Miso, et al.
Publicado: (2023)