Cargando…
Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene
Twisted bilayer graphene is a fascinating system due to the possibility of tuning the electronic and optical properties by controlling the twisting angle [Formula: see text] between the layers. The coupling between the Dirac cones of the two graphene layers gives rise to van Hove singularities (vHs)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390699/ https://www.ncbi.nlm.nih.gov/pubmed/34446790 http://dx.doi.org/10.1038/s41598-021-96515-0 |
_version_ | 1783743132607709184 |
---|---|
author | Moutinho, M. V. O. Eliel, G. S. N. Righi, A. Gontijo, R. N. Paillet, M. Michel, T. Chiu, Po-Wen Venezuela, P. Pimenta, M. A. |
author_facet | Moutinho, M. V. O. Eliel, G. S. N. Righi, A. Gontijo, R. N. Paillet, M. Michel, T. Chiu, Po-Wen Venezuela, P. Pimenta, M. A. |
author_sort | Moutinho, M. V. O. |
collection | PubMed |
description | Twisted bilayer graphene is a fascinating system due to the possibility of tuning the electronic and optical properties by controlling the twisting angle [Formula: see text] between the layers. The coupling between the Dirac cones of the two graphene layers gives rise to van Hove singularities (vHs) in the density of electronic states, whose energies vary with [Formula: see text] . Raman spectroscopy is a fundamental tool to study twisted bilayer graphene (TBG) systems since the Raman response is hugely enhanced when the photons are in resonance with transition between vHs and new peaks appear in the Raman spectra due to phonons within the interior of the Brillouin zone of graphene that are activated by the Moiré superlattice. It was recently shown that these new peaks can be activated by the intralayer and the interlayer electron–phonon processes. In this work we study how each one of these processes enhances the intensities of the peaks coming from the acoustic and optical phonon branches of graphene. Resonance Raman measurements, performed in many different TBG samples with [Formula: see text] between [Formula: see text] and [Formula: see text] and using several different laser excitation energies in the near-infrared (NIR) and visible ranges (1.39–2.71 eV), reveal the distinct enhancement of the different phonons of graphene by the intralayer and interlayer processes. Experimental results are nicely explained by theoretical calculations of the double-resonance Raman intensity in graphene by imposing the momentum conservation rules for the intralayer and the interlayer electron–phonon resonant conditions in TBGs. Our results show that the resonant enhancement of the Raman response in all cases is affected by the quantum interference effect and the symmetry requirements of the double resonance Raman process in graphene. |
format | Online Article Text |
id | pubmed-8390699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-83906992021-09-01 Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene Moutinho, M. V. O. Eliel, G. S. N. Righi, A. Gontijo, R. N. Paillet, M. Michel, T. Chiu, Po-Wen Venezuela, P. Pimenta, M. A. Sci Rep Article Twisted bilayer graphene is a fascinating system due to the possibility of tuning the electronic and optical properties by controlling the twisting angle [Formula: see text] between the layers. The coupling between the Dirac cones of the two graphene layers gives rise to van Hove singularities (vHs) in the density of electronic states, whose energies vary with [Formula: see text] . Raman spectroscopy is a fundamental tool to study twisted bilayer graphene (TBG) systems since the Raman response is hugely enhanced when the photons are in resonance with transition between vHs and new peaks appear in the Raman spectra due to phonons within the interior of the Brillouin zone of graphene that are activated by the Moiré superlattice. It was recently shown that these new peaks can be activated by the intralayer and the interlayer electron–phonon processes. In this work we study how each one of these processes enhances the intensities of the peaks coming from the acoustic and optical phonon branches of graphene. Resonance Raman measurements, performed in many different TBG samples with [Formula: see text] between [Formula: see text] and [Formula: see text] and using several different laser excitation energies in the near-infrared (NIR) and visible ranges (1.39–2.71 eV), reveal the distinct enhancement of the different phonons of graphene by the intralayer and interlayer processes. Experimental results are nicely explained by theoretical calculations of the double-resonance Raman intensity in graphene by imposing the momentum conservation rules for the intralayer and the interlayer electron–phonon resonant conditions in TBGs. Our results show that the resonant enhancement of the Raman response in all cases is affected by the quantum interference effect and the symmetry requirements of the double resonance Raman process in graphene. Nature Publishing Group UK 2021-08-26 /pmc/articles/PMC8390699/ /pubmed/34446790 http://dx.doi.org/10.1038/s41598-021-96515-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Moutinho, M. V. O. Eliel, G. S. N. Righi, A. Gontijo, R. N. Paillet, M. Michel, T. Chiu, Po-Wen Venezuela, P. Pimenta, M. A. Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
title | Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
title_full | Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
title_fullStr | Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
title_full_unstemmed | Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
title_short | Resonance Raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
title_sort | resonance raman enhancement by the intralayer and interlayer electron–phonon processes in twisted bilayer graphene |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390699/ https://www.ncbi.nlm.nih.gov/pubmed/34446790 http://dx.doi.org/10.1038/s41598-021-96515-0 |
work_keys_str_mv | AT moutinhomvo resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT elielgsn resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT righia resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT gontijorn resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT pailletm resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT michelt resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT chiupowen resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT venezuelap resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene AT pimentama resonanceramanenhancementbytheintralayerandinterlayerelectronphononprocessesintwistedbilayergraphene |