Cargando…
High-Efficiency Machine Learning Method for Identifying Foodborne Disease Outbreaks and Confounding Factors
The China National Center for Food Safety Risk Assessment (CFSA) uses the Foodborne Disease Monitoring and Reporting System (FDMRS) to monitor outbreaks of foodborne diseases across the country. However, there are problems of underreporting or erroneous reporting in FDMRS, which significantly increa...
Autores principales: | Zhang, Peng, Cui, Wenjuan, Wang, Hanxue, Du, Yi, Zhou, Yuanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390778/ https://www.ncbi.nlm.nih.gov/pubmed/33902323 http://dx.doi.org/10.1089/fpd.2020.2913 |
Ejemplares similares
-
Machine Learning Prediction of Foodborne Disease Pathogens: Algorithm Development and Validation Study
por: Wang, Hanxue, et al.
Publicado: (2021) -
Foodborne Disease Risk Prediction Using Multigraph Structural Long Short-term Memory Networks: Algorithm Design and Validation Study
por: Du, Yi, et al.
Publicado: (2021) -
Confound-leakage: confound removal in machine learning leads to leakage
por: Hamdan, Sami, et al.
Publicado: (2023) -
Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends
por: Karanth, Shraddha, et al.
Publicado: (2023) -
An Integrated Approach to Identifying International Foodborne Norovirus Outbreaks
por: Verhoef, Linda, et al.
Publicado: (2011)