Cargando…
Phylogenetic and functional structures of succession in plant communities on mounds of Marmota himalayana in alpine regions on the northeast edge of the Qinghai–Tibet Plateau
Few studies have examined the succession of plant communities in the alpine zone. Studying the succession of plant communities is helpful to understand how species diversity is formed and maintained. In this study, we used species inventories, a molecular phylogeny, and trait data to detect patterns...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kunming Institute of Botany, Chinese Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390913/ https://www.ncbi.nlm.nih.gov/pubmed/34485769 http://dx.doi.org/10.1016/j.pld.2021.04.005 |
Sumario: | Few studies have examined the succession of plant communities in the alpine zone. Studying the succession of plant communities is helpful to understand how species diversity is formed and maintained. In this study, we used species inventories, a molecular phylogeny, and trait data to detect patterns of phylogenetic and functional community structure in successional plant communities growing on the mounds of Himalayan marmots (Marmota himalayana) on the southeast edge of the Qinghai-Tibet Plateau. We found that phylogenetic and functional diversities of plant communities on marmot mounds tended to cluster during the early to medium stages of succession, then trended toward overdispersion from medium to late stages. Alpine species in early and late stages of succession were phylogenetically and functionally overdispersed, suggesting that such communities were assembled mainly through species interactions, especially competition. At the medium and late stages of succession, alpine communities growing on marmot mounds were phylogenetically and functionally clustered, implying that the communities were primarily structured by environmental filtering. During the medium and late stages of succession the phylogenetic and functional structures of plant communities on marmot mounds differed significantly from those on neighboring sites. Our results indicate that environmental filtering and species interactions can change plant community composition at different successional stages. Assembly of plant communities on marmot mounds was promoted by a combination of traits that may provide advantages for survival and adaptation during periods of environmental change. |
---|