Cargando…
A Comparison of Deep Learning Techniques for Arterial Blood Pressure Prediction
Continuous vital signal monitoring is becoming more relevant in preventing diseases that afflict a large part of the world’s population; for this reason, healthcare equipment should be easy to wear and simple to use. Non-intrusive and non-invasive detection methods are a basic requirement for wearab...
Autores principales: | Paviglianiti, Annunziata, Randazzo, Vincenzo, Villata, Stefano, Cirrincione, Giansalvo, Pasero, Eros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391010/ https://www.ncbi.nlm.nih.gov/pubmed/34466163 http://dx.doi.org/10.1007/s12559-021-09910-0 |
Ejemplares similares
-
Development and Validation of an Algorithm for the Digitization of ECG Paper Images
por: Randazzo, Vincenzo, et al.
Publicado: (2022) -
A deep-learning model to continuously predict severe acute kidney injury based on urine output changes in critically ill patients
por: Alfieri, Francesca, et al.
Publicado: (2021) -
External validation of a deep-learning model to predict severe acute kidney injury based on urine output changes in critically ill patients
por: Alfieri, Francesca, et al.
Publicado: (2022) -
Transformer-Based Approach to Melanoma Detection
por: Cirrincione, Giansalvo, et al.
Publicado: (2023) -
Anytime ECG Monitoring through the Use of a Low-Cost, User-Friendly, Wearable Device
por: Randazzo, Vincenzo, et al.
Publicado: (2021)