Cargando…
Combining Deep Learning and Graph-Theoretic Brain Features to Detect Posttraumatic Stress Disorder at the Individual Level
Previous studies using resting-state functional MRI (rs-fMRI) have revealed alterations in graphical metrics in groups of individuals with posttraumatic stress disorder (PTSD). To explore the ability of graph measures to diagnose PTSD and capture its essential features in individual patients, we use...
Autores principales: | Zhu, Ziyu, Lei, Du, Qin, Kun, Suo, Xueling, Li, Wenbin, Li, Lingjiang, DelBello, Melissa P., Sweeney, John A., Gong, Qiyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391111/ https://www.ncbi.nlm.nih.gov/pubmed/34441350 http://dx.doi.org/10.3390/diagnostics11081416 |
Ejemplares similares
-
Using deep learning to classify pediatric posttraumatic stress disorder at the individual level
por: Yang, Jing, et al.
Publicado: (2021) -
Psychoradiological abnormalities in treatment‐naive noncomorbid patients with posttraumatic stress disorder
por: Suo, Xueling, et al.
Publicado: (2021) -
Individualized Prediction of PTSD Symptom Severity in Trauma Survivors From Whole-Brain Resting-State Functional Connectivity
por: Suo, Xueling, et al.
Publicado: (2020) -
Disrupted grey matter network morphology in pediatric posttraumatic stress disorder
por: Niu, Running, et al.
Publicado: (2018) -
Brain network structural connectome abnormalities among youth with attention-deficit/hyperactivity disorder at varying risk for bipolar I disorder: a cross-sectional graph-based magnetic resonance imaging study
por: Zhu, Ziyu, et al.
Publicado: (2023)