Cargando…
Mask R-CNN Based C. Elegans Detection with a DIY Microscope
Caenorhabditis elegans (C. elegans) is an important model organism for studying molecular genetics, developmental biology, neuroscience, and cell biology. Advantages of the model organism include its rapid development and aging, easy cultivation, and genetic tractability. C. elegans has been proven...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391161/ https://www.ncbi.nlm.nih.gov/pubmed/34436059 http://dx.doi.org/10.3390/bios11080257 |
_version_ | 1783743206022709248 |
---|---|
author | Fudickar, Sebastian Nustede, Eike Jannik Dreyer, Eike Bornhorst, Julia |
author_facet | Fudickar, Sebastian Nustede, Eike Jannik Dreyer, Eike Bornhorst, Julia |
author_sort | Fudickar, Sebastian |
collection | PubMed |
description | Caenorhabditis elegans (C. elegans) is an important model organism for studying molecular genetics, developmental biology, neuroscience, and cell biology. Advantages of the model organism include its rapid development and aging, easy cultivation, and genetic tractability. C. elegans has been proven to be a well-suited model to study toxicity with identified toxic compounds closely matching those observed in mammals. For phenotypic screening, especially the worm number and the locomotion are of central importance. Traditional methods such as human counting or analyzing high-resolution microscope images are time-consuming and rather low throughput. The article explores the feasibility of low-cost, low-resolution do-it-yourself microscopes for image acquisition and automated evaluation by deep learning methods to reduce cost and allow high-throughput screening strategies. An image acquisition system is proposed within these constraints and used to create a large data-set of whole Petri dishes containing C. elegans. By utilizing the object detection framework Mask R-CNN, the nematodes are located, classified, and their contours predicted. The system has a precision of 0.96 and a recall of 0.956, resulting in an F1-Score of 0.958. Considering only correctly located C. elegans with an AP@0.5 IoU, the system achieved an average precision of 0.902 and a corresponding F1 Score of 0.906. |
format | Online Article Text |
id | pubmed-8391161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83911612021-08-28 Mask R-CNN Based C. Elegans Detection with a DIY Microscope Fudickar, Sebastian Nustede, Eike Jannik Dreyer, Eike Bornhorst, Julia Biosensors (Basel) Article Caenorhabditis elegans (C. elegans) is an important model organism for studying molecular genetics, developmental biology, neuroscience, and cell biology. Advantages of the model organism include its rapid development and aging, easy cultivation, and genetic tractability. C. elegans has been proven to be a well-suited model to study toxicity with identified toxic compounds closely matching those observed in mammals. For phenotypic screening, especially the worm number and the locomotion are of central importance. Traditional methods such as human counting or analyzing high-resolution microscope images are time-consuming and rather low throughput. The article explores the feasibility of low-cost, low-resolution do-it-yourself microscopes for image acquisition and automated evaluation by deep learning methods to reduce cost and allow high-throughput screening strategies. An image acquisition system is proposed within these constraints and used to create a large data-set of whole Petri dishes containing C. elegans. By utilizing the object detection framework Mask R-CNN, the nematodes are located, classified, and their contours predicted. The system has a precision of 0.96 and a recall of 0.956, resulting in an F1-Score of 0.958. Considering only correctly located C. elegans with an AP@0.5 IoU, the system achieved an average precision of 0.902 and a corresponding F1 Score of 0.906. MDPI 2021-07-30 /pmc/articles/PMC8391161/ /pubmed/34436059 http://dx.doi.org/10.3390/bios11080257 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fudickar, Sebastian Nustede, Eike Jannik Dreyer, Eike Bornhorst, Julia Mask R-CNN Based C. Elegans Detection with a DIY Microscope |
title | Mask R-CNN Based C. Elegans Detection with a DIY Microscope |
title_full | Mask R-CNN Based C. Elegans Detection with a DIY Microscope |
title_fullStr | Mask R-CNN Based C. Elegans Detection with a DIY Microscope |
title_full_unstemmed | Mask R-CNN Based C. Elegans Detection with a DIY Microscope |
title_short | Mask R-CNN Based C. Elegans Detection with a DIY Microscope |
title_sort | mask r-cnn based c. elegans detection with a diy microscope |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391161/ https://www.ncbi.nlm.nih.gov/pubmed/34436059 http://dx.doi.org/10.3390/bios11080257 |
work_keys_str_mv | AT fudickarsebastian maskrcnnbasedcelegansdetectionwithadiymicroscope AT nustedeeikejannik maskrcnnbasedcelegansdetectionwithadiymicroscope AT dreyereike maskrcnnbasedcelegansdetectionwithadiymicroscope AT bornhorstjulia maskrcnnbasedcelegansdetectionwithadiymicroscope |