Cargando…

Expression of Piwi, MMP, TIMP, and Sox during Gut Regeneration in Holothurian Eupentacta fraudatrix (Holothuroidea, Dendrochirotida)

Mesodermal cells of holothurian Eupentacta fraudatrix can transdifferentiate into enterocytes during the regeneration of the digestive system. In this study, we investigated the expression of several genes involved in gut regeneration in E. fraudatrix. Moreover, the localization of progenitor cells...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolmatov, Igor Yu., Kalacheva, Nadezhda V., Tkacheva, Ekaterina S., Shulga, Alena P., Zavalnaya, Eugenia G., Shamshurina, Ekaterina V., Girich, Alexander S., Boyko, Alexey V., Eliseikina, Marina G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391186/
https://www.ncbi.nlm.nih.gov/pubmed/34440466
http://dx.doi.org/10.3390/genes12081292
Descripción
Sumario:Mesodermal cells of holothurian Eupentacta fraudatrix can transdifferentiate into enterocytes during the regeneration of the digestive system. In this study, we investigated the expression of several genes involved in gut regeneration in E. fraudatrix. Moreover, the localization of progenitor cells of coelomocytes, juvenile cells, and their participation in the formation of the luminal epithelium of the digestive tube were studied. It was shown that Piwi-positive cells were not involved in the formation of the luminal epithelium of the digestive tube. Ef-72 kDa type IV collagenase and Ef-MMP16 had an individual expression profile and possibly different functions. The Ef-tensilin3 gene exhibited the highest expression and indicates its potential role in regeneration. Ef-Sox9/10 and Ef-Sox17 in E. fraudatrix may participate in the mechanism of transdifferentiation of coelomic epithelial cells. Their transcripts mark the cells that plunge into the connective tissue of the gut anlage and give rise to enterocytes. Ef-Sox9/10 probably controls the switching of mesodermal cells to the enterocyte phenotype, while Ef-Sox17 may be involved in the regulation of the initial stages of transdifferentiation.