Cargando…
The Problem of Engines in Statistical Physics
Engines are open systems that can generate work cyclically at the expense of an external disequilibrium. They are ubiquitous in nature and technology, but the course of mathematical physics over the last 300 years has tended to make their dynamics in time a theoretical blind spot. This has hampered...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391344/ https://www.ncbi.nlm.nih.gov/pubmed/34441235 http://dx.doi.org/10.3390/e23081095 |
_version_ | 1783743252942290944 |
---|---|
author | Alicki, Robert Gelbwaser-Klimovsky, David Jenkins, Alejandro |
author_facet | Alicki, Robert Gelbwaser-Klimovsky, David Jenkins, Alejandro |
author_sort | Alicki, Robert |
collection | PubMed |
description | Engines are open systems that can generate work cyclically at the expense of an external disequilibrium. They are ubiquitous in nature and technology, but the course of mathematical physics over the last 300 years has tended to make their dynamics in time a theoretical blind spot. This has hampered the usefulness of statistical mechanics applied to active systems, including living matter. We argue that recent advances in the theory of open quantum systems, coupled with renewed interest in understanding how active forces result from positive feedback between different macroscopic degrees of freedom in the presence of dissipation, point to a more realistic description of autonomous engines. We propose a general conceptualization of an engine that helps clarify the distinction between its heat and work outputs. Based on this, we show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion. This modifies the usual Fokker–Planck and Langevin equations, offering a thermodynamically complete formulation of the irreversible dynamics of simple oscillating and rotating engines. |
format | Online Article Text |
id | pubmed-8391344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83913442021-08-28 The Problem of Engines in Statistical Physics Alicki, Robert Gelbwaser-Klimovsky, David Jenkins, Alejandro Entropy (Basel) Article Engines are open systems that can generate work cyclically at the expense of an external disequilibrium. They are ubiquitous in nature and technology, but the course of mathematical physics over the last 300 years has tended to make their dynamics in time a theoretical blind spot. This has hampered the usefulness of statistical mechanics applied to active systems, including living matter. We argue that recent advances in the theory of open quantum systems, coupled with renewed interest in understanding how active forces result from positive feedback between different macroscopic degrees of freedom in the presence of dissipation, point to a more realistic description of autonomous engines. We propose a general conceptualization of an engine that helps clarify the distinction between its heat and work outputs. Based on this, we show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion. This modifies the usual Fokker–Planck and Langevin equations, offering a thermodynamically complete formulation of the irreversible dynamics of simple oscillating and rotating engines. MDPI 2021-08-22 /pmc/articles/PMC8391344/ /pubmed/34441235 http://dx.doi.org/10.3390/e23081095 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alicki, Robert Gelbwaser-Klimovsky, David Jenkins, Alejandro The Problem of Engines in Statistical Physics |
title | The Problem of Engines in Statistical Physics |
title_full | The Problem of Engines in Statistical Physics |
title_fullStr | The Problem of Engines in Statistical Physics |
title_full_unstemmed | The Problem of Engines in Statistical Physics |
title_short | The Problem of Engines in Statistical Physics |
title_sort | problem of engines in statistical physics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391344/ https://www.ncbi.nlm.nih.gov/pubmed/34441235 http://dx.doi.org/10.3390/e23081095 |
work_keys_str_mv | AT alickirobert theproblemofenginesinstatisticalphysics AT gelbwaserklimovskydavid theproblemofenginesinstatisticalphysics AT jenkinsalejandro theproblemofenginesinstatisticalphysics AT alickirobert problemofenginesinstatisticalphysics AT gelbwaserklimovskydavid problemofenginesinstatisticalphysics AT jenkinsalejandro problemofenginesinstatisticalphysics |