Cargando…
A Binary Logistic Regression Model as a Tool to Predict Craft Beer Susceptibility to Microbial Spoilage
Beer spoilage caused by microorganisms, which is a major concern for brewers, produces undesirable aromas and flavors in the final product and substantial financial losses. To address this problem, brewers need easy-to-apply tools that inform them of beer susceptibility to the microbial spoilage. In...
Autores principales: | Rodríguez-Saavedra, Magaly, Pérez-Revelo, Karla, Valero, Antonio, Moreno-Arribas, M. Victoria, González de Llano, Dolores |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391359/ https://www.ncbi.nlm.nih.gov/pubmed/34441703 http://dx.doi.org/10.3390/foods10081926 |
Ejemplares similares
-
Beer‐spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality
por: Yu, Zhimin, et al.
Publicado: (2019) -
Primer on binary logistic regression
por: Harris, Jenine K
Publicado: (2021) -
Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage
por: Haakensen, Monique, et al.
Publicado: (2009) -
Methods for detection and identification of beer-spoilage microbes
por: Oldham, Ryanne C., et al.
Publicado: (2023) -
Correction: Primer on binary logistic regression
Publicado: (2022)