Cargando…
ABCDP: Approximate Bayesian Computation with Differential Privacy
We developed a novel approximate Bayesian computation (ABC) framework, ABCDP, which produces differentially private (DP) and approximate posterior samples. Our framework takes advantage of the sparse vector technique (SVT), widely studied in the differential privacy literature. SVT incurs the privac...
Autores principales: | Park, Mijung, Vinaroz, Margarita, Jitkrittum, Wittawat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391538/ https://www.ncbi.nlm.nih.gov/pubmed/34441101 http://dx.doi.org/10.3390/e23080961 |
Ejemplares similares
-
Approximate Bayesian Computation
por: Sunnåker, Mikael, et al.
Publicado: (2013) -
Handbook of approximate Bayesian computation
por: Sisson, Scott A, et al.
Publicado: (2018) -
Approximate Bayesian Computation for Discrete Spaces
por: Auzina, Ilze A., et al.
Publicado: (2021) -
Cognitive Bias in Ambiguity Judgements: Using Computational Models to Dissect the Effects of Mild Mood Manipulation in Humans
por: Iigaya, Kiyohito, et al.
Publicado: (2016) -
Privacy-preserving approximate GWAS computation based on homomorphic encryption
por: Kim, Duhyeong, et al.
Publicado: (2020)