Cargando…

Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy

SIMPLE SUMMARY: Immune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many patients still do not benefit from these treatments, and their real-life application may yield different outcomes compared to the advantage...

Descripción completa

Detalles Bibliográficos
Autores principales: Madonna, Gabriele, Masucci, Giuseppe V., Capone, Mariaelena, Mallardo, Domenico, Grimaldi, Antonio Maria, Simeone, Ester, Vanella, Vito, Festino, Lucia, Palla, Marco, Scarpato, Luigi, Tuffanelli, Marilena, D’angelo, Grazia, Villabona, Lisa, Krakowski, Isabelle, Eriksson, Hanna, Simao, Felipe, Lewensohn, Rolf, Ascierto, Paolo Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391717/
https://www.ncbi.nlm.nih.gov/pubmed/34439318
http://dx.doi.org/10.3390/cancers13164164
_version_ 1783743339988779008
author Madonna, Gabriele
Masucci, Giuseppe V.
Capone, Mariaelena
Mallardo, Domenico
Grimaldi, Antonio Maria
Simeone, Ester
Vanella, Vito
Festino, Lucia
Palla, Marco
Scarpato, Luigi
Tuffanelli, Marilena
D’angelo, Grazia
Villabona, Lisa
Krakowski, Isabelle
Eriksson, Hanna
Simao, Felipe
Lewensohn, Rolf
Ascierto, Paolo Antonio
author_facet Madonna, Gabriele
Masucci, Giuseppe V.
Capone, Mariaelena
Mallardo, Domenico
Grimaldi, Antonio Maria
Simeone, Ester
Vanella, Vito
Festino, Lucia
Palla, Marco
Scarpato, Luigi
Tuffanelli, Marilena
D’angelo, Grazia
Villabona, Lisa
Krakowski, Isabelle
Eriksson, Hanna
Simao, Felipe
Lewensohn, Rolf
Ascierto, Paolo Antonio
author_sort Madonna, Gabriele
collection PubMed
description SIMPLE SUMMARY: Immune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many patients still do not benefit from these treatments, and their real-life application may yield different outcomes compared to the advantage presented in clinical trials. There is therefore a need to select patients who can really benefit from these treatments. We have focused our study on a real-life retrospective analysis of metastatic melanoma patients treated with immunotherapy at a single institution—the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy. With the help of AI and machine learning we validated an algorithm based on clinical variables of patients—namely, the Clinical Categorization Algorithm (CLICAL)—that defines five predictable cohorts of benefit to immunotherapy with 95% accuracy. It can be a useful tool for the stratification of metastatic melanoma patients who may or may not improve from immunotherapy treatment. ABSTRACT: The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy.
format Online
Article
Text
id pubmed-8391717
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83917172021-08-28 Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy Madonna, Gabriele Masucci, Giuseppe V. Capone, Mariaelena Mallardo, Domenico Grimaldi, Antonio Maria Simeone, Ester Vanella, Vito Festino, Lucia Palla, Marco Scarpato, Luigi Tuffanelli, Marilena D’angelo, Grazia Villabona, Lisa Krakowski, Isabelle Eriksson, Hanna Simao, Felipe Lewensohn, Rolf Ascierto, Paolo Antonio Cancers (Basel) Article SIMPLE SUMMARY: Immune checkpoint inhibitors have improved the prognosis for patients with advanced melanoma. Despite the recent success of immunotherapy, many patients still do not benefit from these treatments, and their real-life application may yield different outcomes compared to the advantage presented in clinical trials. There is therefore a need to select patients who can really benefit from these treatments. We have focused our study on a real-life retrospective analysis of metastatic melanoma patients treated with immunotherapy at a single institution—the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy. With the help of AI and machine learning we validated an algorithm based on clinical variables of patients—namely, the Clinical Categorization Algorithm (CLICAL)—that defines five predictable cohorts of benefit to immunotherapy with 95% accuracy. It can be a useful tool for the stratification of metastatic melanoma patients who may or may not improve from immunotherapy treatment. ABSTRACT: The real-life application of immune checkpoint inhibitors (ICIs) may yield different outcomes compared to the benefit presented in clinical trials. For this reason, there is a need to define the group of patients that may benefit from treatment. We retrospectively investigated 578 metastatic melanoma patients treated with ICIs at the Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale” of Napoli, Italy (INT-NA). To compare patients’ clinical variables (i.e., age, lactate dehydrogenase (LDH), neutrophil–lymphocyte ratio (NLR), eosinophil, BRAF status, previous treatment) and their predictive and prognostic power in a comprehensive, non-hierarchical manner, a clinical categorization algorithm (CLICAL) was defined and validated by the application of a machine learning algorithm—survival random forest (SRF-CLICAL). The comprehensive analysis of the clinical parameters by log risk-based algorithms resulted in predictive signatures that could identify groups of patients with great benefit or not, regardless of the ICI received. From a real-life retrospective analysis of metastatic melanoma patients, we generated and validated an algorithm based on machine learning that could assist with the clinical decision of whether or not to apply ICI therapy by defining five signatures of predictability with 95% accuracy. MDPI 2021-08-19 /pmc/articles/PMC8391717/ /pubmed/34439318 http://dx.doi.org/10.3390/cancers13164164 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Madonna, Gabriele
Masucci, Giuseppe V.
Capone, Mariaelena
Mallardo, Domenico
Grimaldi, Antonio Maria
Simeone, Ester
Vanella, Vito
Festino, Lucia
Palla, Marco
Scarpato, Luigi
Tuffanelli, Marilena
D’angelo, Grazia
Villabona, Lisa
Krakowski, Isabelle
Eriksson, Hanna
Simao, Felipe
Lewensohn, Rolf
Ascierto, Paolo Antonio
Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
title Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
title_full Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
title_fullStr Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
title_full_unstemmed Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
title_short Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
title_sort clinical categorization algorithm (clical) and machine learning approach (srf-clical) to predict clinical benefit to immunotherapy in metastatic melanoma patients: real-world evidence from the istituto nazionale tumori irccs fondazione pascale, napoli, italy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391717/
https://www.ncbi.nlm.nih.gov/pubmed/34439318
http://dx.doi.org/10.3390/cancers13164164
work_keys_str_mv AT madonnagabriele clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT masuccigiuseppev clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT caponemariaelena clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT mallardodomenico clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT grimaldiantoniomaria clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT simeoneester clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT vanellavito clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT festinolucia clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT pallamarco clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT scarpatoluigi clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT tuffanellimarilena clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT dangelograzia clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT villabonalisa clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT krakowskiisabelle clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT erikssonhanna clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT simaofelipe clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT lewensohnrolf clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly
AT asciertopaoloantonio clinicalcategorizationalgorithmclicalandmachinelearningapproachsrfclicaltopredictclinicalbenefittoimmunotherapyinmetastaticmelanomapatientsrealworldevidencefromtheistitutonazionaletumoriirccsfondazionepascalenapoliitaly