Cargando…

Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant impact on people’s daily lives. The rapidly spreading B.1.617 lineage harbors two key mutations—L452R and E484Q—in the receptor binding domain (RBD) of its spike (S) protein. To understand the impact and structural dynamics...

Descripción completa

Detalles Bibliográficos
Autores principales: Antony, Priya, Vijayan, Ranjit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391770/
https://www.ncbi.nlm.nih.gov/pubmed/34439910
http://dx.doi.org/10.3390/biom11081244
_version_ 1783743352027480064
author Antony, Priya
Vijayan, Ranjit
author_facet Antony, Priya
Vijayan, Ranjit
author_sort Antony, Priya
collection PubMed
description The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant impact on people’s daily lives. The rapidly spreading B.1.617 lineage harbors two key mutations—L452R and E484Q—in the receptor binding domain (RBD) of its spike (S) protein. To understand the impact and structural dynamics of the variations in the interface of S protein and its host factor, the human angiotensin-converting enzyme 2 (hACE2), triplicate 500 ns molecular dynamics simulations were performed using single (E484Q or L452R) and double (E484Q + L452R) mutant structures and compared to wild type simulations. Our results indicate that the E484Q mutation disrupts the conserved salt bridge formed between Lys31 of hACE2 and Glu484 of S protein. Additionally, E484Q, which could favor the up conformation of the RBD, may help in enhanced hACE2 binding and immune escape. L452R introduces a charged patch near the binding surface that permits increased electrostatic attraction between the proteins. An improved network of intramolecular interactions observed is likely to increase the stability of the S protein and conformational changes may prevent the binding of neutralizing antibodies. The results obtained from the molecular dynamics simulations suggest that structural and dynamic changes introduced by these variations enhance the affinity of the viral S protein to hACE2 and could form the basis for further studies.
format Online
Article
Text
id pubmed-8391770
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83917702021-08-28 Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant Antony, Priya Vijayan, Ranjit Biomolecules Article The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant impact on people’s daily lives. The rapidly spreading B.1.617 lineage harbors two key mutations—L452R and E484Q—in the receptor binding domain (RBD) of its spike (S) protein. To understand the impact and structural dynamics of the variations in the interface of S protein and its host factor, the human angiotensin-converting enzyme 2 (hACE2), triplicate 500 ns molecular dynamics simulations were performed using single (E484Q or L452R) and double (E484Q + L452R) mutant structures and compared to wild type simulations. Our results indicate that the E484Q mutation disrupts the conserved salt bridge formed between Lys31 of hACE2 and Glu484 of S protein. Additionally, E484Q, which could favor the up conformation of the RBD, may help in enhanced hACE2 binding and immune escape. L452R introduces a charged patch near the binding surface that permits increased electrostatic attraction between the proteins. An improved network of intramolecular interactions observed is likely to increase the stability of the S protein and conformational changes may prevent the binding of neutralizing antibodies. The results obtained from the molecular dynamics simulations suggest that structural and dynamic changes introduced by these variations enhance the affinity of the viral S protein to hACE2 and could form the basis for further studies. MDPI 2021-08-20 /pmc/articles/PMC8391770/ /pubmed/34439910 http://dx.doi.org/10.3390/biom11081244 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Antony, Priya
Vijayan, Ranjit
Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant
title Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant
title_full Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant
title_fullStr Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant
title_full_unstemmed Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant
title_short Molecular Dynamics Simulation Study of the Interaction between Human Angiotensin Converting Enzyme 2 and Spike Protein Receptor Binding Domain of the SARS-CoV-2 B.1.617 Variant
title_sort molecular dynamics simulation study of the interaction between human angiotensin converting enzyme 2 and spike protein receptor binding domain of the sars-cov-2 b.1.617 variant
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391770/
https://www.ncbi.nlm.nih.gov/pubmed/34439910
http://dx.doi.org/10.3390/biom11081244
work_keys_str_mv AT antonypriya moleculardynamicssimulationstudyoftheinteractionbetweenhumanangiotensinconvertingenzyme2andspikeproteinreceptorbindingdomainofthesarscov2b1617variant
AT vijayanranjit moleculardynamicssimulationstudyoftheinteractionbetweenhumanangiotensinconvertingenzyme2andspikeproteinreceptorbindingdomainofthesarscov2b1617variant