Cargando…
Unsupervised Learning Methods for Molecular Simulation Data
[Image: see text] Unsupervised learning is becoming an essential tool to analyze the increasingly large amounts of data produced by atomistic and molecular simulations, in material science, solid state physics, biophysics, and biochemistry. In this Review, we provide a comprehensive overview of the...
Autores principales: | Glielmo, Aldo, Husic, Brooke E., Rodriguez, Alex, Clementi, Cecilia, Noé, Frank, Laio, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391792/ https://www.ncbi.nlm.nih.gov/pubmed/33945269 http://dx.doi.org/10.1021/acs.chemrev.0c01195 |
Ejemplares similares
-
DADApy: Distance-based analysis of data-manifolds in Python
por: Glielmo, Aldo, et al.
Publicado: (2022) -
Ranking the information content of distance measures
por: Glielmo, Aldo, et al.
Publicado: (2022) -
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
TorchMD: A Deep Learning Framework for Molecular Simulations
por: Doerr, Stefan, et al.
Publicado: (2021) -
DPCfam: Unsupervised protein family classification by Density Peak Clustering of large sequence datasets
por: Russo, Elena Tea, et al.
Publicado: (2022)