Cargando…
Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems
[Image: see text] Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expert...
Autores principales: | Keith, John A., Vassilev-Galindo, Valentin, Cheng, Bingqing, Chmiela, Stefan, Gastegger, Michael, Müller, Klaus-Robert, Tkatchenko, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391798/ https://www.ncbi.nlm.nih.gov/pubmed/34232033 http://dx.doi.org/10.1021/acs.chemrev.1c00107 |
Ejemplares similares
-
Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023) -
Author Correction: Efficient interatomic descriptors for accurate machine learning force fields of extended molecules
por: Kabylda, Adil, et al.
Publicado: (2023) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature
por: Sauceda, Huziel E., et al.
Publicado: (2021)