Cargando…
TransMed: Transformers Advance Multi-Modal Medical Image Classification
Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality o...
Autores principales: | Dai, Yin, Gao, Yifan, Liu, Fayu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391808/ https://www.ncbi.nlm.nih.gov/pubmed/34441318 http://dx.doi.org/10.3390/diagnostics11081384 |
Ejemplares similares
-
Adopting Quaternion Wavelet Transform to Fuse Multi-Modal Medical Images
por: Geng, Peng, et al.
Publicado: (2017) -
Swin transformer-based GAN for multi-modal medical image translation
por: Yan, Shouang, et al.
Publicado: (2022) -
TransEffiDet: Aircraft Detection and Classification in Aerial Images Based on EfficientDet and Transformer
por: Wang, Yanfeng, et al.
Publicado: (2022) -
Trans. Pennsylvania Med. Society
Publicado: (1871) -
Multi-modal medical image classification using deep residual network and genetic algorithm
por: Abid, Muhammad Haris, et al.
Publicado: (2023)