Cargando…
Evaluating Temporal Correlations in Time Series Using Permutation Entropy, Ordinal Probabilities and Machine Learning
Time series analysis comprises a wide repertoire of methods for extracting information from data sets. Despite great advances in time series analysis, identifying and quantifying the strength of nonlinear temporal correlations remain a challenge. We have recently proposed a new method based on train...
Autores principales: | Boaretto, Bruno R. R., Budzinski, Roberto C., Rossi, Kalel L., Prado, Thiago L., Lopes, Sergio R., Masoller, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391825/ https://www.ncbi.nlm.nih.gov/pubmed/34441165 http://dx.doi.org/10.3390/e23081025 |
Ejemplares similares
-
Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
por: Boaretto, B. R. R., et al.
Publicado: (2021) -
Using the Information Provided by Forbidden Ordinal Patterns in Permutation Entropy to Reinforce Time Series Discrimination Capabilities
por: Cuesta-Frau, David
Publicado: (2020) -
Improvement of Statistical Performance of Ordinal Multiscale Entropy Techniques Using Refined Composite Downsampling Permutation Entropy
por: Dávalos, Antonio, et al.
Publicado: (2020) -
Permutation Entropy: Enhancing Discriminating Power by Using Relative Frequencies Vector of Ordinal Patterns Instead of Their Shannon Entropy
por: Cuesta-Frau, David, et al.
Publicado: (2019) -
Application of Permutation Entropy and Permutation Min-Entropy in Multiple Emotional States Analysis of RRI Time Series
por: Xia, Yirong, et al.
Publicado: (2018)