Cargando…
Coarse-Grained Pruning of Neural Network Models Based on Blocky Sparse Structure
Deep neural networks may achieve excellent performance in many research fields. However, many deep neural network models are over-parameterized. The computation of weight matrices often consumes a lot of time, which requires plenty of computing resources. In order to solve these problems, a novel bl...
Autores principales: | Huang, Lan, Zeng, Jia, Sun, Shiqi, Wang, Wencong, Wang, Yan, Wang, Kangping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391831/ https://www.ncbi.nlm.nih.gov/pubmed/34441182 http://dx.doi.org/10.3390/e23081042 |
Ejemplares similares
-
Sequence Blockiness Controls the Structure of Polyampholyte
Necklaces
por: Rumyantsev, Artem M., et al.
Publicado: (2021) -
Coarse-graining of the dynamics seen in neural networks
por: Ben-Tal, Alona, et al.
Publicado: (2013) -
Coarse-Grained
Modeling Using Neural Networks Trained
on Structural Data
por: Ivanov, Mikhail, et al.
Publicado: (2023) -
A No-Reference Adaptive Blockiness Measure for JPEG Compressed Images
por: Tang, Chaoying, et al.
Publicado: (2016) -
MobilePrune: Neural Network Compression via ℓ(0) Sparse Group Lasso on the Mobile System
por: Shao, Yubo, et al.
Publicado: (2022)