Cargando…
On Supervised Classification of Feature Vectors with Independent and Non-Identically Distributed Elements
In this paper, we investigate the problem of classifying feature vectors with mutually independent but non-identically distributed elements that take values from a finite alphabet set. First, we show the importance of this problem. Next, we propose a classifier and derive an analytical upper bound o...
Autores principales: | Shahrivari, Farzad, Zlatanov, Nikola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391840/ https://www.ncbi.nlm.nih.gov/pubmed/34441185 http://dx.doi.org/10.3390/e23081045 |
Ejemplares similares
-
Supervised redundant feature detection for tumor classification
por: Zeng, Xue-Qiang, et al.
Publicado: (2014) -
Feature Selection for Interpatient Supervised Heart Beat Classification
por: Doquire, G., et al.
Publicado: (2011) -
Semi-Supervised Feature Transformation for Tissue Image Classification
por: Watanabe, Kenji, et al.
Publicado: (2016) -
Vector representation based on a supervised codebook for Nepali documents classification
por: Sitaula, Chiranjibi, et al.
Publicado: (2021) -
A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging
por: Erez, Neta, et al.
Publicado: (2021)