Cargando…

The Information Loss of a Stochastic Map

We provide a stochastic extension of the Baez–Fritz–Leinster characterization of the Shannon information loss associated with a measure-preserving function. This recovers the conditional entropy and a closely related information-theoretic measure that we call conditional information loss. Although n...

Descripción completa

Detalles Bibliográficos
Autores principales: Fullwood, James, Parzygnat, Arthur J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391917/
https://www.ncbi.nlm.nih.gov/pubmed/34441161
http://dx.doi.org/10.3390/e23081021
Descripción
Sumario:We provide a stochastic extension of the Baez–Fritz–Leinster characterization of the Shannon information loss associated with a measure-preserving function. This recovers the conditional entropy and a closely related information-theoretic measure that we call conditional information loss. Although not functorial, these information measures are semi-functorial, a concept we introduce that is definable in any Markov category. We also introduce the notion of an entropic Bayes’ rule for information measures, and we provide a characterization of conditional entropy in terms of this rule.