Cargando…
Machine Learning for Electronically Excited States of Molecules
[Image: see text] Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive....
Autores principales: | Westermayr, Julia, Marquetand, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391943/ https://www.ncbi.nlm.nih.gov/pubmed/33211478 http://dx.doi.org/10.1021/acs.chemrev.0c00749 |
Ejemplares similares
-
Combining SchNet and SHARC: The SchNarc Machine Learning
Approach for Excited-State Dynamics
por: Westermayr, Julia, et al.
Publicado: (2020) -
Machine learning enables long time scale molecular photodynamics simulations
por: Westermayr, Julia, et al.
Publicado: (2019) -
Physically inspired deep learning of molecular excitations and photoemission spectra
por: Westermayr, Julia, et al.
Publicado: (2021) -
BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding
Neural Network/Molecular Mechanics Simulations
por: Lier, Bettina, et al.
Publicado: (2022) -
Electronic
and Structural Elements That Regulate the
Excited-State Dynamics in Purine Nucleobase Derivatives
por: Crespo-Hernández, Carlos E., et al.
Publicado: (2015)