Cargando…
Gaussian Process Regression for Materials and Molecules
[Image: see text] We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the construction of interatomic potentials, or...
Autores principales: | Deringer, Volker L., Bartók, Albert P., Bernstein, Noam, Wilkins, David M., Ceriotti, Michele, Csányi, Gábor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391963/ https://www.ncbi.nlm.nih.gov/pubmed/34398616 http://dx.doi.org/10.1021/acs.chemrev.1c00022 |
Ejemplares similares
-
Machine learning unifies the modeling of materials and molecules
por: Bartók, Albert P., et al.
Publicado: (2017) -
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
por: Bernstein, Noam, et al.
Publicado: (2019) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Extracting Crystal Chemistry from Amorphous Carbon Structures
por: Deringer, Volker L., et al.
Publicado: (2017) -
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Deringer, Volker L., et al.
Publicado: (2020)