Cargando…
Machine Learning Force Fields
[Image: see text] In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based...
Autores principales: | Unke, Oliver T., Chmiela, Stefan, Sauceda, Huziel E., Gastegger, Michael, Poltavsky, Igor, Schütt, Kristof T., Tkatchenko, Alexandre, Müller, Klaus-Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391964/ https://www.ncbi.nlm.nih.gov/pubmed/33705118 http://dx.doi.org/10.1021/acs.chemrev.0c01111 |
Ejemplares similares
-
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
por: Unke, Oliver T., et al.
Publicado: (2021) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Chmiela, Stefan, et al.
Publicado: (2018) -
BIGDML—Towards accurate quantum machine learning force fields for materials
por: Sauceda, Huziel E., et al.
Publicado: (2022)