Cargando…
EEG-Based Emotion Recognition by Exploiting Fused Network Entropy Measures of Complex Networks across Subjects
It is well known that there may be significant individual differences in physiological signal patterns for emotional responses. Emotion recognition based on electroencephalogram (EEG) signals is still a challenging task in the context of developing an individual-independent recognition method. In ou...
Autores principales: | Yao, Longxin, Wang, Mingjiang, Lu, Yun, Li, Heng, Zhang, Xue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391986/ https://www.ncbi.nlm.nih.gov/pubmed/34441124 http://dx.doi.org/10.3390/e23080984 |
Ejemplares similares
-
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
Entropy-Based Emotion Recognition from Multichannel EEG Signals Using Artificial Neural Network
por: Aung, Si Thu, et al.
Publicado: (2022) -
Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
por: Li, Jingcong, et al.
Publicado: (2021) -
Cross-Subject EEG-Based Emotion Recognition Through Neural Networks With Stratified Normalization
por: Fdez, Javier, et al.
Publicado: (2021) -
Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition
por: Cimtay, Yucel, et al.
Publicado: (2020)