Cargando…
Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain
Knowledge of the kilometers traveled by vehicles is essential in transport and road safety studies as an indicator of exposure and mobility. Its application in the determination of user risk indices in a disaggregated manner is of great interest to the scientific community and the authorities in cha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391987/ https://www.ncbi.nlm.nih.gov/pubmed/34444076 http://dx.doi.org/10.3390/ijerph18168327 |
_version_ | 1783743400591228928 |
---|---|
author | Narváez-Villa, Paúl Arenas-Ramírez, Blanca Mira, José Aparicio-Izquierdo, Francisco |
author_facet | Narváez-Villa, Paúl Arenas-Ramírez, Blanca Mira, José Aparicio-Izquierdo, Francisco |
author_sort | Narváez-Villa, Paúl |
collection | PubMed |
description | Knowledge of the kilometers traveled by vehicles is essential in transport and road safety studies as an indicator of exposure and mobility. Its application in the determination of user risk indices in a disaggregated manner is of great interest to the scientific community and the authorities in charge of ensuring road safety on highways. This study used a sample of the data recorded during passenger vehicle inspections at Vehicle Technical Inspection stations and housed in a data warehouse managed by the General Directorate for Traffic of Spain. This study has three notable characteristics: (1) a novel data source is explored, (2) the methodology developed applies to other types of vehicles, with the level of disaggregation the data allows, and (3) pattern extraction and the estimate of mobility contribute to the continuous and necessary improvement of road safety indicators and are aligned with goal 3 (Good Health and Well-Being: Target 3.6) of The United Nations Sustainable Development Goals of the 2030 Agenda. An Operational Data Warehouse was created from the sample received, which helped in obtaining inference values for the kilometers traveled by Spanish fleet vehicles with a level of disaggregation that, to the knowledge of the authors, was unreachable with advanced statistical models. Three machine learning methods, CART, random forest, and gradient boosting, were optimized and compared based on the performance metrics of the models. The three methods identified the age, engine size, and tare weight of passenger vehicles as the factors with greatest influence on their travel patterns. |
format | Online Article Text |
id | pubmed-8391987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83919872021-08-28 Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain Narváez-Villa, Paúl Arenas-Ramírez, Blanca Mira, José Aparicio-Izquierdo, Francisco Int J Environ Res Public Health Article Knowledge of the kilometers traveled by vehicles is essential in transport and road safety studies as an indicator of exposure and mobility. Its application in the determination of user risk indices in a disaggregated manner is of great interest to the scientific community and the authorities in charge of ensuring road safety on highways. This study used a sample of the data recorded during passenger vehicle inspections at Vehicle Technical Inspection stations and housed in a data warehouse managed by the General Directorate for Traffic of Spain. This study has three notable characteristics: (1) a novel data source is explored, (2) the methodology developed applies to other types of vehicles, with the level of disaggregation the data allows, and (3) pattern extraction and the estimate of mobility contribute to the continuous and necessary improvement of road safety indicators and are aligned with goal 3 (Good Health and Well-Being: Target 3.6) of The United Nations Sustainable Development Goals of the 2030 Agenda. An Operational Data Warehouse was created from the sample received, which helped in obtaining inference values for the kilometers traveled by Spanish fleet vehicles with a level of disaggregation that, to the knowledge of the authors, was unreachable with advanced statistical models. Three machine learning methods, CART, random forest, and gradient boosting, were optimized and compared based on the performance metrics of the models. The three methods identified the age, engine size, and tare weight of passenger vehicles as the factors with greatest influence on their travel patterns. MDPI 2021-08-06 /pmc/articles/PMC8391987/ /pubmed/34444076 http://dx.doi.org/10.3390/ijerph18168327 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Narváez-Villa, Paúl Arenas-Ramírez, Blanca Mira, José Aparicio-Izquierdo, Francisco Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain |
title | Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain |
title_full | Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain |
title_fullStr | Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain |
title_full_unstemmed | Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain |
title_short | Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain |
title_sort | analysis and prediction of vehicle kilometers traveled: a case study in spain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391987/ https://www.ncbi.nlm.nih.gov/pubmed/34444076 http://dx.doi.org/10.3390/ijerph18168327 |
work_keys_str_mv | AT narvaezvillapaul analysisandpredictionofvehiclekilometerstraveledacasestudyinspain AT arenasramirezblanca analysisandpredictionofvehiclekilometerstraveledacasestudyinspain AT mirajose analysisandpredictionofvehiclekilometerstraveledacasestudyinspain AT aparicioizquierdofrancisco analysisandpredictionofvehiclekilometerstraveledacasestudyinspain |