Cargando…
MCN-CPI: Multiscale Convolutional Network for Compound–Protein Interaction Prediction
In the process of drug discovery, identifying the interaction between the protein and the novel compound plays an important role. With the development of technology, deep learning methods have shown excellent performance in various situations. However, the compound–protein interaction is complicated...
Autores principales: | Wang, Shuang, Jiang, Mingjian, Zhang, Shugang, Wang, Xiaofeng, Yuan, Qing, Wei, Zhiqiang, Li, Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392217/ https://www.ncbi.nlm.nih.gov/pubmed/34439785 http://dx.doi.org/10.3390/biom11081119 |
Ejemplares similares
-
Toxicity Prediction Method Based on Multi-Channel Convolutional Neural Network
por: Yuan, Qing, et al.
Publicado: (2019) -
Drug–target affinity prediction using graph neural network and contact maps
por: Jiang, Mingjian, et al.
Publicado: (2020) -
SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network
por: Zhang, Shugang, et al.
Publicado: (2021) -
Perceiver CPI: a nested cross-attention network for compound–protein interaction prediction
por: Nguyen, Ngoc-Quang, et al.
Publicado: (2022) -
SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning
por: Wang, Xun, et al.
Publicado: (2022)