Cargando…
Comparison of Random Forest and Gradient Boosting Machine Models for Predicting Demolition Waste Based on Small Datasets and Categorical Variables
Construction and demolition waste (DW) generation information has been recognized as a tool for providing useful information for waste management. Recently, numerous researchers have actively utilized artificial intelligence technology to establish accurate waste generation information. This study i...
Autores principales: | Cha, Gi-Wook, Moon, Hyeun-Jun, Kim, Young-Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392226/ https://www.ncbi.nlm.nih.gov/pubmed/34444277 http://dx.doi.org/10.3390/ijerph18168530 |
Ejemplares similares
-
Development of a Prediction Model for Demolition Waste Generation Using a Random Forest Algorithm Based on Small DataSets
por: Cha, Gi-Wook, et al.
Publicado: (2020) -
The Effects of Data Collection Method and Monitoring of Workers’ Behavior on the Generation of Demolition Waste
por: Cha, Gi-Wook, et al.
Publicado: (2017) -
Development of Machine Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in Redevelopment Areas
por: Cha, Gi-Wook, et al.
Publicado: (2022) -
Developing a Prediction Model of Demolition-Waste Generation-Rate via Principal Component Analysis
por: Cha, Gi-Wook, et al.
Publicado: (2023) -
Quality and quantity of construction and demolition waste in Tehran
por: Asgari, Alireza, et al.
Publicado: (2017)